Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks

Jingzhi Liu, Quanlei Qu, Hongyi Yang, Jianming Zhang, Zhidong Liu
{"title":"Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks","authors":"Jingzhi Liu, Quanlei Qu, Hongyi Yang, Jianming Zhang, Zhidong Liu","doi":"10.15837/ijccc.2024.4.6607","DOIUrl":null,"url":null,"abstract":"Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two-stage approach for fault location and identification in distribution networks with DG. First, an improved bald eagle search algorithm combined with the Dijkstra algorithm (D-IBES) is developed for fault location. Second, a fusion deep residual shrinkage network (FDRSN) is integrated with IBES and support vector machine (SVM) to form the FDRSN-IBS-SVM model for fault identification. Experimental results showed that the D-IBES algorithm achieved a CPU loss rate of 0.54% and an average time consumption of 1.70 seconds in complex scenarios, outperforming the original IBES algorithm. The FDRSN-IBS-SVM model attained high fault identification accuracy (99.05% and 98.54%) under different DG output power levels and maintained robustness (97.89% accuracy and 97.54% recall) under 5% Gaussian white noise. The proposed approach demonstrates superior performance compared to existing methods and provides a promising solution for intelligent fault diagnosis in modern distribution networks.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"14 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2024.4.6607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two-stage approach for fault location and identification in distribution networks with DG. First, an improved bald eagle search algorithm combined with the Dijkstra algorithm (D-IBES) is developed for fault location. Second, a fusion deep residual shrinkage network (FDRSN) is integrated with IBES and support vector machine (SVM) to form the FDRSN-IBS-SVM model for fault identification. Experimental results showed that the D-IBES algorithm achieved a CPU loss rate of 0.54% and an average time consumption of 1.70 seconds in complex scenarios, outperforming the original IBES algorithm. The FDRSN-IBS-SVM model attained high fault identification accuracy (99.05% and 98.54%) under different DG output power levels and maintained robustness (97.89% accuracy and 97.54% recall) under 5% Gaussian white noise. The proposed approach demonstrates superior performance compared to existing methods and provides a promising solution for intelligent fault diagnosis in modern distribution networks.
基于深度学习的配电网络智能故障诊断
由于分布式发电(DG)集成带来的高度不确定性、随机性和复杂性,带有分布式发电(DG)的配电网络在故障诊断方面面临挑战。本研究提出了一种分两个阶段定位和识别分布式发电配电网络故障的方法。首先,开发了一种结合 Dijkstra 算法(D-IBES)的改进型秃鹰搜索算法,用于故障定位。其次,融合深度残差收缩网络(FDRSN)与 IBES 和支持向量机(SVM),形成用于故障识别的 FDRSN-IBS-SVM 模型。实验结果表明,在复杂场景下,D-IBES 算法的 CPU 损耗率为 0.54%,平均耗时为 1.70 秒,优于原始 IBES 算法。FDRSN-IBS-SVM 模型在不同的 DG 输出功率水平下实现了较高的故障识别准确率(99.05% 和 98.54%),并在 5%的高斯白噪声下保持了鲁棒性(97.89% 的准确率和 97.54% 的召回率)。与现有方法相比,所提出的方法性能优越,为现代配电网的智能故障诊断提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信