{"title":"Uncovering substrate specificity determinants of class IIb aminoacyl-tRNA synthetases with machine learning","authors":"Thomas Simonson, Victor Mihaila, Ivan Reveguk","doi":"10.1016/j.jmgm.2024.108818","DOIUrl":null,"url":null,"abstract":"<div><p>Specific amino acid (AA) binding by aminoacyl-tRNA synthetases (aaRSs) is necessary for correct translation of the genetic code. Sequence and structure analyses have revealed the main specificity determinants and allowed a partitioning of aaRSs into two classes and several subclasses. However, the information contributed by each determinant has not been precisely quantified, and other, minor determinants may still be unidentified. Growth of genomic data and development of machine learning classification methods allow us to revisit these questions. This work considered the subclass IIb, formed by the three enzymes aspartyl-, asparaginyl-, and lysyl-tRNA synthetase (LysRS). Over 35,000 sequences from the Pfam database were considered, and used to train a machine-learning model based on ensembles of decision trees. The model was trained to reproduce the existing classification of each sequence as AspRS, AsnRS, or LysRS, and to identify which sequence positions were most important for the classification. A few positions (5–8 depending on the AA substrate) sufficed for accurate classification. Most but not all of them were well-known specificity determinants. The machine learning models thus identified sets of mutations that distinguish the three subclass members, which might be targeted in engineering efforts to alter or swap the AA specificities for biotechnology applications.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"132 ","pages":"Article 108818"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001189","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Specific amino acid (AA) binding by aminoacyl-tRNA synthetases (aaRSs) is necessary for correct translation of the genetic code. Sequence and structure analyses have revealed the main specificity determinants and allowed a partitioning of aaRSs into two classes and several subclasses. However, the information contributed by each determinant has not been precisely quantified, and other, minor determinants may still be unidentified. Growth of genomic data and development of machine learning classification methods allow us to revisit these questions. This work considered the subclass IIb, formed by the three enzymes aspartyl-, asparaginyl-, and lysyl-tRNA synthetase (LysRS). Over 35,000 sequences from the Pfam database were considered, and used to train a machine-learning model based on ensembles of decision trees. The model was trained to reproduce the existing classification of each sequence as AspRS, AsnRS, or LysRS, and to identify which sequence positions were most important for the classification. A few positions (5–8 depending on the AA substrate) sufficed for accurate classification. Most but not all of them were well-known specificity determinants. The machine learning models thus identified sets of mutations that distinguish the three subclass members, which might be targeted in engineering efforts to alter or swap the AA specificities for biotechnology applications.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.