Hyperspectral image construction in different spectral bands of tea leafs for identifying the tea type using O-ConvNet-RF model

Q2 Mathematics
Likitha Gongalla, Monali Bordoloi
{"title":"Hyperspectral image construction in different spectral bands of tea leafs for identifying the tea type using O-ConvNet-RF model","authors":"Likitha Gongalla, Monali Bordoloi","doi":"10.11591/ijeecs.v35.i1.pp301-309","DOIUrl":null,"url":null,"abstract":"Tea, a commonly consumed beverage, is susceptible to being sold in adulterated or expired forms by third-party vendors. Hyperspectral imaging across different wavelength bands has proven to precisely assess the diverse types of tea and their corresponding financial gains. This study aims to employ a deep learning methodology in conjunction with hyperspectral imaging for efficiently classifying tea leaves. A novel approach is proposed, wherein a waveband convolutional neural network is utilized to generate hyper spectral images of tea leaf samples with enhanced resolution. The model known as optimized-convolutional neural network-random forest O- (ConvNet-RF) demonstrated exceptional performance, achieving high accuracy, impressive recall, F1 score, and notable sensitivity rate, outperforming existing alternative methods. The tea leaf types, namely green, yellow, and black, were accurately identified using a combination of the random forest (RF) model and the O-ConvNet-RF model. The tree-based classification method for the identification of tea leaves demonstrated superior performance as compared to alternative machine learning models. In general, this study presents a successful methodology for the classification of tea leaves, with potential implications for consumer processing and distributor profit analysis.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp301-309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Tea, a commonly consumed beverage, is susceptible to being sold in adulterated or expired forms by third-party vendors. Hyperspectral imaging across different wavelength bands has proven to precisely assess the diverse types of tea and their corresponding financial gains. This study aims to employ a deep learning methodology in conjunction with hyperspectral imaging for efficiently classifying tea leaves. A novel approach is proposed, wherein a waveband convolutional neural network is utilized to generate hyper spectral images of tea leaf samples with enhanced resolution. The model known as optimized-convolutional neural network-random forest O- (ConvNet-RF) demonstrated exceptional performance, achieving high accuracy, impressive recall, F1 score, and notable sensitivity rate, outperforming existing alternative methods. The tea leaf types, namely green, yellow, and black, were accurately identified using a combination of the random forest (RF) model and the O-ConvNet-RF model. The tree-based classification method for the identification of tea leaves demonstrated superior performance as compared to alternative machine learning models. In general, this study presents a successful methodology for the classification of tea leaves, with potential implications for consumer processing and distributor profit analysis.
利用 O-ConvNet-RF 模型构建不同光谱波段的茶叶高光谱图像以识别茶叶类型
茶叶作为一种常见的饮料,很容易被第三方供应商以掺假或过期的形式出售。事实证明,不同波段的高光谱成像可以精确评估不同类型的茶叶及其相应的经济收益。本研究旨在将深度学习方法与高光谱成像相结合,对茶叶进行有效分类。研究提出了一种新方法,利用波段卷积神经网络生成分辨率更高的茶叶样本高光谱图像。被称为 "优化卷积神经网络-随机森林 O"(ConvNet-RF)的模型表现出卓越的性能,实现了较高的准确率、令人印象深刻的召回率、F1 分数和显著的灵敏度,优于现有的替代方法。利用随机森林(RF)模型和 O-ConvNet-RF 模型的组合,可以准确识别绿茶、黄茶和红茶的叶片类型。与其他机器学习模型相比,基于树的茶叶识别分类方法表现出更优越的性能。总之,本研究提出了一种成功的茶叶分类方法,对消费者加工和经销商利润分析具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
782
期刊介绍: The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信