Priyanka P. Chavan, Umesh D. Babar, Ashok D. Chougale, D. Shetti, Rahul Patil, Pradip Kamble, Mohamed H. Mahmoud
{"title":"Hydrothermal Synthesis of Metal Ferrite Nanocomposites for Energy Storage Applications","authors":"Priyanka P. Chavan, Umesh D. Babar, Ashok D. Chougale, D. Shetti, Rahul Patil, Pradip Kamble, Mohamed H. Mahmoud","doi":"10.1166/jno.2024.3627","DOIUrl":null,"url":null,"abstract":"We report on a simple and facile synthesis of manganese ferrite (MnFe2O4) and nickel-manganese ferrite (Ni-MnFe2O4) nanoparticles by hydrothermal method using 2 M NaOH. In this work, the resultant nanoparticles were characterized by using\n various tools. The X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDAX) were studied to confirm the structural and, morphological properties of obtained MnFe2O4 and Ni-MnFe2O4. Electrochemical\n impedance spectroscopy (EIS), galvanostatic charge-discharge (GCD), and cyclic voltammetry (CV) were used to examine the electrochemical characteristics. The average crystallite size of (MnFe2O4) and (Ni-MnFe2O4) nanoparticles has been found to be\n 23.75 nm and 17.88 nm, respectively. The morphology of the resultant product was observed to be spherical and semi-spherical in shape. A major component of supercapacitors are their electrode materials, and in order to achieve maximum capacitive performances, electrode material structural\n design should be emphasised. The electrochemical supercapacitor electrode application of manganese ferrite (MnFe2O4) and nickel-manganese ferrite (Ni-MnFe2O4), thin films deposited onto nickel-foam substrates using the doctor blade method are explored.\n The maximum specific capacitance values, obtained using galvanostatic charge–discharge plots of as-deposited manganese ferrite and nickel-manganese ferrite electrode in 1 M KOH aqueous solutions at 1 (mA/cm2) is 885 F/g and at 1 (mA/cm2) is 1255 F/g respectively.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2024.3627","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We report on a simple and facile synthesis of manganese ferrite (MnFe2O4) and nickel-manganese ferrite (Ni-MnFe2O4) nanoparticles by hydrothermal method using 2 M NaOH. In this work, the resultant nanoparticles were characterized by using
various tools. The X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDAX) were studied to confirm the structural and, morphological properties of obtained MnFe2O4 and Ni-MnFe2O4. Electrochemical
impedance spectroscopy (EIS), galvanostatic charge-discharge (GCD), and cyclic voltammetry (CV) were used to examine the electrochemical characteristics. The average crystallite size of (MnFe2O4) and (Ni-MnFe2O4) nanoparticles has been found to be
23.75 nm and 17.88 nm, respectively. The morphology of the resultant product was observed to be spherical and semi-spherical in shape. A major component of supercapacitors are their electrode materials, and in order to achieve maximum capacitive performances, electrode material structural
design should be emphasised. The electrochemical supercapacitor electrode application of manganese ferrite (MnFe2O4) and nickel-manganese ferrite (Ni-MnFe2O4), thin films deposited onto nickel-foam substrates using the doctor blade method are explored.
The maximum specific capacitance values, obtained using galvanostatic charge–discharge plots of as-deposited manganese ferrite and nickel-manganese ferrite electrode in 1 M KOH aqueous solutions at 1 (mA/cm2) is 885 F/g and at 1 (mA/cm2) is 1255 F/g respectively.