Sanaullah Kaka, Mingchao Xia, Arif Hussain, Kashif Zulfiqar
{"title":"Optimal DGs coordination strategy for managing unbalanced and islanded distribution networks","authors":"Sanaullah Kaka, Mingchao Xia, Arif Hussain, Kashif Zulfiqar","doi":"10.1515/ijeeps-2024-0062","DOIUrl":null,"url":null,"abstract":"Abstract Distributed generators (DGs) have the potential to act as alternative power sources for balancing and restoring service in distribution system breakdowns. Nevertheless, DGs variety of characteristics and uncertain behavior pose difficulties in optimizing their operation while restoring the system. In this paper, a hierarchical structure is introduced to manage the unbalanced and islanded distribution networks with the optimal coordination strategy of DGs. The proposed approach encompasses multiple control tiers that manage DGs coordination process into three specific levels, each accountable for distinct functions involving voltage and frequency regulation, power distribution within individual islands, and overseeing power exchange between these units for minimizing imbalance and maximizing the load restoration. This research delivers a comprehensive solution for optimally coordinating DGs in unbalanced and isolated networks during restoration, thus elevating system reliability and resilience. The proposed model for distributed control restoration is validated using a modified IEEE 123-bus test setup.","PeriodicalId":45651,"journal":{"name":"International Journal of Emerging Electric Power Systems","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Electric Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijeeps-2024-0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Distributed generators (DGs) have the potential to act as alternative power sources for balancing and restoring service in distribution system breakdowns. Nevertheless, DGs variety of characteristics and uncertain behavior pose difficulties in optimizing their operation while restoring the system. In this paper, a hierarchical structure is introduced to manage the unbalanced and islanded distribution networks with the optimal coordination strategy of DGs. The proposed approach encompasses multiple control tiers that manage DGs coordination process into three specific levels, each accountable for distinct functions involving voltage and frequency regulation, power distribution within individual islands, and overseeing power exchange between these units for minimizing imbalance and maximizing the load restoration. This research delivers a comprehensive solution for optimally coordinating DGs in unbalanced and isolated networks during restoration, thus elevating system reliability and resilience. The proposed model for distributed control restoration is validated using a modified IEEE 123-bus test setup.
期刊介绍:
International Journal of Emerging Electric Power Systems (IJEEPS) publishes significant research and scholarship related to latest and up-and-coming developments in power systems. The mandate of the journal is to assemble high quality papers from the recent research and development efforts in new technologies and techniques for generation, transmission, distribution and utilization of electric power. Topics The range of topics includes: electric power generation sources integration of unconventional sources into existing power systems generation planning and control new technologies and techniques for power transmission, distribution, protection, control and measurement power system analysis, economics, operation and stability deregulated power systems power system communication metering technologies demand-side management industrial electric power distribution and utilization systems.