Landslide detection based on deep learning and remote sensing imagery: A case study in Linzhi City

Yutong Wang , Hong Gao , Shuhao Liu , Dayi Yang , Aixuan Liu , Gang Mei
{"title":"Landslide detection based on deep learning and remote sensing imagery: A case study in Linzhi City","authors":"Yutong Wang ,&nbsp;Hong Gao ,&nbsp;Shuhao Liu ,&nbsp;Dayi Yang ,&nbsp;Aixuan Liu ,&nbsp;Gang Mei","doi":"10.1016/j.nhres.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Landslides result in serious damage to economic and land resources. Automated landslide detection over a wide area for the study and prevention of geohazards is important. Linzhi is located in the southeastern part of the Tibetan Plateau, one of the most landslide-prone regions in China. In this paper, we utilize a deep learning approach in combination with remote sensing images to detect landslides in Linzhi City. SHAP-based interpretability analysis and exponential Weighted Method and Technique for Order Preference by Similarity to Ideal Solution (EWM-TOPSIS) method are employed to investigate the catastrophic factors that affect landslides and results of landslide detection in Linzhi City. The obtained results indicate that the model is basically accurate in landslide detection in the Linzhi area, and most of the evaluation indexes of the model training are above 80%. Moreover, vegetation cover and rainfall are important causal factors triggering landslides in Linzhi City. Our research will provide a reference for landslide detection in similar areas.</div></div>","PeriodicalId":100943,"journal":{"name":"Natural Hazards Research","volume":"5 1","pages":"Pages 95-108"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666592124000568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Landslides result in serious damage to economic and land resources. Automated landslide detection over a wide area for the study and prevention of geohazards is important. Linzhi is located in the southeastern part of the Tibetan Plateau, one of the most landslide-prone regions in China. In this paper, we utilize a deep learning approach in combination with remote sensing images to detect landslides in Linzhi City. SHAP-based interpretability analysis and exponential Weighted Method and Technique for Order Preference by Similarity to Ideal Solution (EWM-TOPSIS) method are employed to investigate the catastrophic factors that affect landslides and results of landslide detection in Linzhi City. The obtained results indicate that the model is basically accurate in landslide detection in the Linzhi area, and most of the evaluation indexes of the model training are above 80%. Moreover, vegetation cover and rainfall are important causal factors triggering landslides in Linzhi City. Our research will provide a reference for landslide detection in similar areas.
基于深度学习和遥感影像的滑坡检测:林芝市案例研究
山体滑坡对经济和土地资源造成严重破坏。滑坡自动探测对于研究和预防大范围的地质灾害具有重要意义。林芝位于青藏高原的东南部,是中国最容易发生山体滑坡的地区之一。在本文中,我们利用深度学习方法结合遥感图像来检测林芝市的滑坡。采用基于shap的可解释性分析方法、指数加权法和理想解相似度优先排序法(EWM-TOPSIS)对影响林芝滑坡的灾变因素和滑坡检测结果进行了研究。结果表明,该模型在林芝地区的滑坡检测中基本准确,模型训练的评价指标大部分在80%以上。植被覆盖和降雨是引发林芝滑坡的重要原因。本文的研究将为类似地区的滑坡检测提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信