Multiphysics Analysis and Verification of Jet Flight in Electrohydrodynamic Printing for Near-Field Electrospinning Applications

Sanjana Subramaniam, Jian Cao, K. Ehmann
{"title":"Multiphysics Analysis and Verification of Jet Flight in Electrohydrodynamic Printing for Near-Field Electrospinning Applications","authors":"Sanjana Subramaniam, Jian Cao, K. Ehmann","doi":"10.1115/1.4065874","DOIUrl":null,"url":null,"abstract":"\n Electrohydrodynamic (EHD) printing is a versatile process that can be used to pattern high-resolution droplets and fibers through the deposition of an electrified jet. This highly complex process utilizes a coupled hydrodynamic and electrostatic mechanism to drive the fluid flow. While it has many biomedical, electronic, and filtration applications, its widescale usage is hampered by a lack of detailed understanding of the jetting physics that enables this process. In this paper, a numerical model is developed and validated to explore the design space of the EHD jetting process, from Taylor Cone formation to jet impingement onto the substrate, and analyze the key geometrical and process parameters that yield high-resolution structures. This numerical model applies to various process parameters, material properties, and environmental factors and can accurately capture jet evolution, radius, and flight time. It can be used to better inform design decisions when using EHD processes with distinct resolution requirements.","PeriodicalId":513355,"journal":{"name":"Journal of Micro- and Nano-Manufacturing","volume":"168 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro- and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrohydrodynamic (EHD) printing is a versatile process that can be used to pattern high-resolution droplets and fibers through the deposition of an electrified jet. This highly complex process utilizes a coupled hydrodynamic and electrostatic mechanism to drive the fluid flow. While it has many biomedical, electronic, and filtration applications, its widescale usage is hampered by a lack of detailed understanding of the jetting physics that enables this process. In this paper, a numerical model is developed and validated to explore the design space of the EHD jetting process, from Taylor Cone formation to jet impingement onto the substrate, and analyze the key geometrical and process parameters that yield high-resolution structures. This numerical model applies to various process parameters, material properties, and environmental factors and can accurately capture jet evolution, radius, and flight time. It can be used to better inform design decisions when using EHD processes with distinct resolution requirements.
近场电纺丝应用中电流体动力印刷喷流飞行的多物理场分析与验证
电流体动力(EHD)印刷是一种多功能工艺,可通过电化射流的沉积来绘制高分辨率的液滴和纤维图案。这种高度复杂的工艺利用流体动力和静电耦合机制来驱动流体流动。虽然它有许多生物医学、电子和过滤方面的应用,但由于缺乏对实现这一过程的喷射物理学的详细了解,其广泛应用受到了阻碍。本文开发并验证了一个数值模型,用于探索从泰勒锥形成到射流撞击基底的 EHD 喷射过程的设计空间,并分析产生高分辨率结构的关键几何和过程参数。该数值模型适用于各种工艺参数、材料特性和环境因素,能够准确捕捉射流的演变、半径和飞行时间。在使用具有不同分辨率要求的 EHD 工艺时,它可以为设计决策提供更好的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信