R. Ghibate, Meryem Kerrou, Mohammed Chrachmy, Meryem Ben Baaziz, R. Taouil, Omar Senhaji
{"title":"Utilizing Agricultural Waste for Sustainable Remediation of Textile Dyeing Effluents","authors":"R. Ghibate, Meryem Kerrou, Mohammed Chrachmy, Meryem Ben Baaziz, R. Taouil, Omar Senhaji","doi":"10.12912/27197050/188713","DOIUrl":null,"url":null,"abstract":"The primary focus of the current investigation was to assess the removal of Rhodamine B dye (RhB) from aqueous solutions using pomegranate peel as a green adsorbent. The chemical and morphological characterization of pome-granate peel was conducted through ATR-FTIR spectroscopy and SEM microscopy. The study also investigated various reactional parameters, kinetic, and adsorption isotherm in a batch system. The results revealed that RhB adsorption reaches equilibrium in about 2 hours, with an adsorption capacity of 19.41 mg/g observed at a 50 mg/L of initial RhB concentration. To model the kinetic of RhB adsorption, two well-known models (pseudo-first-order and pseudo-second-order) were applied. The pseudo-second-order model yielded a superior fit for the kinetic data, as evidenced by analyses of R 2 , RMSE, ARE, and χ² values. Additionally, the findings suggest that the adsorp - tion process is not solely governed by intraparticle diffusion. Furthermore, isotherm analysis revealed that the Langmuir model offered a more accurate fit to the equilibrium data, estimating the maximum removal capacity to be 47.17 mg/g. These findings suggest that pomegranate peel offers a promisingly eco-friendly and cost-effective solution for sustainable remediation of textile dyeing effluents.","PeriodicalId":448145,"journal":{"name":"Ecological Engineering & Environmental Technology","volume":"32 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering & Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/188713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The primary focus of the current investigation was to assess the removal of Rhodamine B dye (RhB) from aqueous solutions using pomegranate peel as a green adsorbent. The chemical and morphological characterization of pome-granate peel was conducted through ATR-FTIR spectroscopy and SEM microscopy. The study also investigated various reactional parameters, kinetic, and adsorption isotherm in a batch system. The results revealed that RhB adsorption reaches equilibrium in about 2 hours, with an adsorption capacity of 19.41 mg/g observed at a 50 mg/L of initial RhB concentration. To model the kinetic of RhB adsorption, two well-known models (pseudo-first-order and pseudo-second-order) were applied. The pseudo-second-order model yielded a superior fit for the kinetic data, as evidenced by analyses of R 2 , RMSE, ARE, and χ² values. Additionally, the findings suggest that the adsorp - tion process is not solely governed by intraparticle diffusion. Furthermore, isotherm analysis revealed that the Langmuir model offered a more accurate fit to the equilibrium data, estimating the maximum removal capacity to be 47.17 mg/g. These findings suggest that pomegranate peel offers a promisingly eco-friendly and cost-effective solution for sustainable remediation of textile dyeing effluents.