Yushi Cheng, Xiaoyu Ji, Wenjun Zhu, Shibo Zhang, Kevin Fu, Wenyuan Xu
{"title":"Adversarial Computer Vision via Acoustic Manipulation of Camera Sensors","authors":"Yushi Cheng, Xiaoyu Ji, Wenjun Zhu, Shibo Zhang, Kevin Fu, Wenyuan Xu","doi":"10.1109/TDSC.2023.3334618","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles increasingly rely on camera-based computer vision systems to perceive environments and make critical driving decisions. To improve image quality, image stabilizers with inertial sensors are added to reduce image blurring caused by camera jitters. However, this trend creates a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of emerging image stabilizer hardware susceptible to acoustic manipulation and computer vision algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even when the camera is stable. These blurred images can induce object misclassification, affecting safety-critical decision-making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks: hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against five object detectors (YOLO V3/V4/V5, Faster R-CNN, and Apollo) and two lane detectors (UFLD and LaneAF). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2023.3334618","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
Autonomous vehicles increasingly rely on camera-based computer vision systems to perceive environments and make critical driving decisions. To improve image quality, image stabilizers with inertial sensors are added to reduce image blurring caused by camera jitters. However, this trend creates a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of emerging image stabilizer hardware susceptible to acoustic manipulation and computer vision algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even when the camera is stable. These blurred images can induce object misclassification, affecting safety-critical decision-making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks: hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against five object detectors (YOLO V3/V4/V5, Faster R-CNN, and Apollo) and two lane detectors (UFLD and LaneAF). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.