Multi-Objective Intelligent Optimization Design Method of Microstrip Antenna Based on Back Propagation Neural Network

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Dingli Liu, Yang Yue, Guilin Xu, Yu Xian
{"title":"Multi-Objective Intelligent Optimization Design Method of Microstrip Antenna Based on Back Propagation Neural Network","authors":"Dingli Liu, Yang Yue, Guilin Xu, Yu Xian","doi":"10.1166/jno.2024.3626","DOIUrl":null,"url":null,"abstract":"Antenna plays an important role in modern communication. Accurate calculation of antenna structure to obtain reasonable electromagnetic characteristic parameters is an important part of antenna design. With the increasing complexity of the antenna structure, a large number of numerical\n calculations are required in the design process to determine the optimal structure size. Therefore, it’s necessary to study the fast optimization algorithm of antenna multi-objective (antenna bandwidth, gain, polarization characteristics, etc) optimization design method. In this paper,\n a new adaptive BF neural network is proposed to optimize the resonant frequency and size structure of dual frequency circular polarization microstrip antenna, so as to improve the efficiency of antenna design.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2024.3626","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Antenna plays an important role in modern communication. Accurate calculation of antenna structure to obtain reasonable electromagnetic characteristic parameters is an important part of antenna design. With the increasing complexity of the antenna structure, a large number of numerical calculations are required in the design process to determine the optimal structure size. Therefore, it’s necessary to study the fast optimization algorithm of antenna multi-objective (antenna bandwidth, gain, polarization characteristics, etc) optimization design method. In this paper, a new adaptive BF neural network is proposed to optimize the resonant frequency and size structure of dual frequency circular polarization microstrip antenna, so as to improve the efficiency of antenna design.
基于反向传播神经网络的微带天线多目标智能优化设计方法
天线在现代通信中发挥着重要作用。精确计算天线结构以获得合理的电磁特性参数是天线设计的重要组成部分。随着天线结构的日益复杂,在设计过程中需要进行大量的数值计算来确定最佳结构尺寸。因此,有必要研究天线多目标(天线带宽、增益、极化特性等)优化设计方法的快速优化算法。本文提出了一种新的自适应 BF 神经网络来优化双频圆极化微带天线的谐振频率和尺寸结构,从而提高天线设计的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanoelectronics and Optoelectronics
Journal of Nanoelectronics and Optoelectronics 工程技术-工程:电子与电气
自引率
16.70%
发文量
48
审稿时长
12.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信