Improving Earth surface temperature forecasting through the optimization of deep learning hyper-parameters using Barnacles Mating Optimizer

Zuriani Mustaffa , Mohd Herwan Sulaiman , Muhammad ‘Arif Mohamad
{"title":"Improving Earth surface temperature forecasting through the optimization of deep learning hyper-parameters using Barnacles Mating Optimizer","authors":"Zuriani Mustaffa ,&nbsp;Mohd Herwan Sulaiman ,&nbsp;Muhammad ‘Arif Mohamad","doi":"10.1016/j.fraope.2024.100137","DOIUrl":null,"url":null,"abstract":"<div><p>Time series forecasting is crucial across various sectors, aiding stakeholders in making informed decisions, planning for the short and long term, managing risks, optimizing profits, and ensuring safety. One significant application of time series forecasting is predicting Earth surface temperatures, which is vital for civil and environmental sectors such as agriculture, energy, and meteorology. This study proposes a hybrid forecasting model for Earth surface temperature using Deep Learning (DL). To improve the DL model's performance, an optimization algorithm called Barnacles Mating Optimizer (BMO) is integrated to optimize both weights and biases. The forecasting model is trained on a global temperature dataset with seven inputs and compared with DL models optimized by Particle Swarm Optimization (PSO), Harmony Search Algorithm (HSA), and Ant Colony Optimization (ACO). Additionally, a comparison is made with the Autoregressive Moving Average (ARIMA) method. Evaluation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the coefficient of determination (R2) demonstrates the superior performance of DL optimized by BMO, showing minimal errors.</p></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"8 ","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773186324000677/pdfft?md5=b41c1a4bd8c630ef8b27f53ffde3339f&pid=1-s2.0-S2773186324000677-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186324000677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time series forecasting is crucial across various sectors, aiding stakeholders in making informed decisions, planning for the short and long term, managing risks, optimizing profits, and ensuring safety. One significant application of time series forecasting is predicting Earth surface temperatures, which is vital for civil and environmental sectors such as agriculture, energy, and meteorology. This study proposes a hybrid forecasting model for Earth surface temperature using Deep Learning (DL). To improve the DL model's performance, an optimization algorithm called Barnacles Mating Optimizer (BMO) is integrated to optimize both weights and biases. The forecasting model is trained on a global temperature dataset with seven inputs and compared with DL models optimized by Particle Swarm Optimization (PSO), Harmony Search Algorithm (HSA), and Ant Colony Optimization (ACO). Additionally, a comparison is made with the Autoregressive Moving Average (ARIMA) method. Evaluation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the coefficient of determination (R2) demonstrates the superior performance of DL optimized by BMO, showing minimal errors.

利用藤壶交配优化器优化深度学习超参数,改进地球表面温度预报
时间序列预测对各行各业都至关重要,可帮助利益相关者做出明智决策、制定短期和长期规划、管理风险、优化利润并确保安全。时间序列预测的一个重要应用是预测地球表面温度,这对农业、能源和气象等民用和环境部门至关重要。本研究提出了一种使用深度学习(DL)的地球表面温度混合预测模型。为了提高 DL 模型的性能,该模型集成了一种名为 Barnacles Mating Optimizer(BMO)的优化算法,以优化权重和偏差。该预测模型在具有七个输入的全球温度数据集上进行了训练,并与通过粒子群优化(PSO)、和谐搜索算法(HSA)和蚁群优化(ACO)优化的 DL 模型进行了比较。此外,还与自回归移动平均(ARIMA)方法进行了比较。使用平均绝对误差 (MAE)、均方根误差 (RMSE) 和判定系数 (R2) 进行的评估表明,经 BMO 优化的 DL 性能优越,误差极小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信