An analogue of a conjecture of Rasmussen and Tamagawa for abelian varieties over function fields

IF 0.5 4区 数学 Q3 MATHEMATICS
Mentzelos Melistas
{"title":"An analogue of a conjecture of Rasmussen and Tamagawa for abelian varieties over function fields","authors":"Mentzelos Melistas","doi":"10.1016/j.indag.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>L</mi></math></span> be a number field and let <span><math><mi>ℓ</mi></math></span> be a prime number. Rasmussen and Tamagawa conjectured, in a precise sense, that abelian varieties whose field of definition of the <span><math><mi>ℓ</mi></math></span>-power torsion is both a pro-<span><math><mi>ℓ</mi></math></span> extension of <span><math><mrow><mi>L</mi><mrow><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and unramified away from <span><math><mi>ℓ</mi></math></span> are quite rare. In this paper, we formulate an analogue of the Rasmussen–Tamagawa conjecture for non-isotrivial abelian varieties defined over function fields. We provide a proof of our analogue in the case of elliptic curves. In higher dimensions, when the base field is a subfield of the complex numbers, we show that our conjecture is a consequence of the uniform geometric torsion conjecture. Finally, using a theorem of Bakker and Tsimerman we also prove our conjecture unconditionally for abelian varieties with real multiplication.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 6","pages":"Pages 1270-1281"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000764","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let L be a number field and let be a prime number. Rasmussen and Tamagawa conjectured, in a precise sense, that abelian varieties whose field of definition of the -power torsion is both a pro- extension of L(μ) and unramified away from are quite rare. In this paper, we formulate an analogue of the Rasmussen–Tamagawa conjecture for non-isotrivial abelian varieties defined over function fields. We provide a proof of our analogue in the case of elliptic curves. In higher dimensions, when the base field is a subfield of the complex numbers, we show that our conjecture is a consequence of the uniform geometric torsion conjecture. Finally, using a theorem of Bakker and Tsimerman we also prove our conjecture unconditionally for abelian varieties with real multiplication.
拉斯穆森和玉川对函数域上无性变种猜想的类比
设 L 是一个数域,ℓ 是一个素数。Rasmussen 和 Tamagawa 在精确的意义上猜想,其 ℓ-power torsion 的定义域既是 L(μℓ) 的 pro-ℓ 扩展,又远离 ℓ 无ramified 的无方变体是非常罕见的。在本文中,我们针对定义在函数域上的非等边无性变体,提出了拉斯穆森-玉川猜想(Rasmussen-Tamagawa conjecture)的类比。我们提供了在椭圆曲线情况下的类比证明。在更高维度上,当基域是复数的子域时,我们证明了我们的猜想是均匀几何扭转猜想的结果。最后,我们还利用巴克尔和齐默尔曼的一个定理,无条件地证明了我们的猜想适用于具有实乘法的无方变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信