Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations

Q1 Mathematics
Iqbal M. Batiha , Osama Ogilat , Issam Bendib , Adel Ouannas , Iqbal H. Jebril , Nidal Anakira
{"title":"Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations","authors":"Iqbal M. Batiha ,&nbsp;Osama Ogilat ,&nbsp;Issam Bendib ,&nbsp;Adel Ouannas ,&nbsp;Iqbal H. Jebril ,&nbsp;Nidal Anakira","doi":"10.1016/j.csfx.2024.100118","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to explore finite-time synchronization in a specific subset of fractional-order epidemic reaction–diffusion systems. Initially, we introduce a new lemma for finite-time stability, which extends existing criteria and builds upon previous discoveries. Following this, we design effective state-dependent linear controllers. By utilizing a Lyapunov function, we derive new sufficient conditions to ensure finite-time synchronization within a predefined time frame. Lastly, we present numerical simulations to demonstrate the applicability and effectiveness of the proposed technique.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"13 ","pages":"Article 100118"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054424000150/pdfft?md5=2bd6b7c314412ef249b69cfbbb84f9a7&pid=1-s2.0-S2590054424000150-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054424000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to explore finite-time synchronization in a specific subset of fractional-order epidemic reaction–diffusion systems. Initially, we introduce a new lemma for finite-time stability, which extends existing criteria and builds upon previous discoveries. Following this, we design effective state-dependent linear controllers. By utilizing a Lyapunov function, we derive new sufficient conditions to ensure finite-time synchronization within a predefined time frame. Lastly, we present numerical simulations to demonstrate the applicability and effectiveness of the proposed technique.

分数阶流行病模型的有限时间动力学:稳定性、同步性和模拟
本文旨在探讨分数阶流行反应扩散系统特定子集中的有限时间同步性。首先,我们引入了一个新的有限时间稳定性(finite-time stability)lemma,该lemma扩展了现有的标准,并以之前的发现为基础。随后,我们设计了有效的与状态相关的线性控制器。通过利用 Lyapunov 函数,我们得出了新的充分条件,以确保在预定义的时间框架内实现有限时间同步。最后,我们通过数值模拟来证明所提技术的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信