Testing heterogeneous treatment effect with quantile regression under covariate-adaptive randomization

IF 9.9 3区 经济学 Q1 ECONOMICS
Yang Liu , Lucy Xia , Feifang Hu
{"title":"Testing heterogeneous treatment effect with quantile regression under covariate-adaptive randomization","authors":"Yang Liu ,&nbsp;Lucy Xia ,&nbsp;Feifang Hu","doi":"10.1016/j.jeconom.2024.105808","DOIUrl":null,"url":null,"abstract":"<div><div><span><span><span>In economic studies and </span>clinical trials, it is prevalent to observe heterogeneous treatment effects that vary depending on the relative locations of units in the distribution of responses. In this study, we propose using </span>quantile regression to estimate and conduct inference for conditional quantile treatment effects (cQTEs) in covariate-adaptive randomized experiments. First, we present sufficient conditions for consistently estimating the cQTEs, concerning the bias due to omitting important covariates in the inference stage. Second, we derive the weak convergence of the quantile regression process and develop a covariate-adaptive randomized bootstrap (</span><span>CAR-BS</span>) for standard error estimation. Our theoretical results indicate that the Wald test adjusted by <span>CAR-BS</span> is valid in terms of the Type I error, for a large class of covariate-adaptive randomization procedures at different quantiles, regardless of the choice of covariates used in inference. We perform extensive numerical and empirical studies to demonstrate advantages of the new method in various settings.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105808"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001544","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In economic studies and clinical trials, it is prevalent to observe heterogeneous treatment effects that vary depending on the relative locations of units in the distribution of responses. In this study, we propose using quantile regression to estimate and conduct inference for conditional quantile treatment effects (cQTEs) in covariate-adaptive randomized experiments. First, we present sufficient conditions for consistently estimating the cQTEs, concerning the bias due to omitting important covariates in the inference stage. Second, we derive the weak convergence of the quantile regression process and develop a covariate-adaptive randomized bootstrap (CAR-BS) for standard error estimation. Our theoretical results indicate that the Wald test adjusted by CAR-BS is valid in terms of the Type I error, for a large class of covariate-adaptive randomization procedures at different quantiles, regardless of the choice of covariates used in inference. We perform extensive numerical and empirical studies to demonstrate advantages of the new method in various settings.
在协变量自适应随机化条件下使用量子回归测试异质性治疗效果
在经济研究和临床试验中,普遍观察到异质性治疗效果,这种效果取决于反应分布中单位的相对位置。在本研究中,我们提出使用分位数回归对协变量自适应随机实验中的条件分位数处理效应(cqte)进行估计和推理。首先,我们提出了一致估计cqte的充分条件,涉及由于在推理阶段忽略重要协变量而导致的偏差。其次,我们推导了分位数回归过程的弱收敛性,并提出了一种用于标准误差估计的协变量自适应随机bootstrap (CAR-BS)方法。我们的理论结果表明,CAR-BS调整的Wald检验在I型误差方面是有效的,对于不同分位数的大量协变量自适应随机化过程,无论在推理中使用的协变量的选择如何。我们进行了广泛的数值和实证研究,以证明新方法在各种情况下的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信