Yifei Yang , Edward Narayan , Clive J.C. Phillips , Sonia Rey Planellas , Lu Zheng , Xiaofang Ruan , Arnaud Fabrice Tegomo , Hao-Yu Shih , Qingjun Shao , Kris Descovich
{"title":"Effects of simulated motion frequency related to road quality on the welfare and recovery of transported largemouth bass (Micropterus salmoides)","authors":"Yifei Yang , Edward Narayan , Clive J.C. Phillips , Sonia Rey Planellas , Lu Zheng , Xiaofang Ruan , Arnaud Fabrice Tegomo , Hao-Yu Shih , Qingjun Shao , Kris Descovich","doi":"10.1016/j.applanim.2024.106342","DOIUrl":null,"url":null,"abstract":"<div><p>Farmed fish are commonly transported between various facilities by road vehicles, resulting in inevitable exposure to uncontrolled and oscillatory movements, likely exacerbated by poor road conditions. The effect of road quality on livestock has been studied during live transport, but research into the impact of motion has been rarely examined with fish. This study investigated the effects of different motion frequencies related to road quality on the welfare and recovery of largemouth bass (<em>Micropterus salmoides</em>). Three motion frequencies were examined in this study using a non-transported control, a simulated “rough” transport treatment, and a simulated “smooth” transport treatment. Live transport was carried out for 3 h using a motion simulation platform with a movement frequency of 1.0 and 1.8 Hz for the smooth and rough treatment, respectively. Control fish were kept in static tanks for the same duration to obtain basal physiology, behaviour, and flesh quality. Water parameters were measured before and immediately after simulated transport in all groups. Behavioural, physiological, and muscle parameters were measured before simulated transport, as well as 0 h and 24 h post-transport. Total ammonia nitrogen levels increased in all treatments over time (<em>p</em> < 0.001), with significantly higher values observed in transported groups. Non-transported fish displayed increased biting (<em>p</em> = 0.025), chasing (<em>p</em> = 0.010), and threatening (<em>p</em> = 0.003) behaviour over time, suggesting potential fasting and confinement stress. During the post-transport period, a significant main effect of treatment and timepoint on freezing and thigmotaxis behaviour was found, with an increase in these behaviours over time and significantly higher levels between control and smooth transported groups. Nevertheless, aggressive behaviours were affected only by timepoint, with an increase observed between 0 h and 24 h post-transport. Neither plasma biochemical indicators nor flesh quality differed between treatments, while a significant effect of timepoint was found for plasma glucose (<em>p</em> = 0.045), <em>p</em>lasma lactate (<em>p</em> = 0.021), and muscle pH (<em>p</em> < 0.001). Our study consequently did not find rough transport to impact fish physiology and flesh quality more than smooth transport, but behavioural results suggest there was a strong combined effect of fasting, exposure to a novel environment, and confinement over time. Future research would be valuable to study these effects on the welfare of transported bass, allowing for a longer recovery time and the use of potential mitigation options such as environmental enrichment.</p></div>","PeriodicalId":8222,"journal":{"name":"Applied Animal Behaviour Science","volume":"277 ","pages":"Article 106342"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168159124001904/pdfft?md5=64a0eaae939462e8c93ba7d1e06e55e9&pid=1-s2.0-S0168159124001904-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Animal Behaviour Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168159124001904","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Farmed fish are commonly transported between various facilities by road vehicles, resulting in inevitable exposure to uncontrolled and oscillatory movements, likely exacerbated by poor road conditions. The effect of road quality on livestock has been studied during live transport, but research into the impact of motion has been rarely examined with fish. This study investigated the effects of different motion frequencies related to road quality on the welfare and recovery of largemouth bass (Micropterus salmoides). Three motion frequencies were examined in this study using a non-transported control, a simulated “rough” transport treatment, and a simulated “smooth” transport treatment. Live transport was carried out for 3 h using a motion simulation platform with a movement frequency of 1.0 and 1.8 Hz for the smooth and rough treatment, respectively. Control fish were kept in static tanks for the same duration to obtain basal physiology, behaviour, and flesh quality. Water parameters were measured before and immediately after simulated transport in all groups. Behavioural, physiological, and muscle parameters were measured before simulated transport, as well as 0 h and 24 h post-transport. Total ammonia nitrogen levels increased in all treatments over time (p < 0.001), with significantly higher values observed in transported groups. Non-transported fish displayed increased biting (p = 0.025), chasing (p = 0.010), and threatening (p = 0.003) behaviour over time, suggesting potential fasting and confinement stress. During the post-transport period, a significant main effect of treatment and timepoint on freezing and thigmotaxis behaviour was found, with an increase in these behaviours over time and significantly higher levels between control and smooth transported groups. Nevertheless, aggressive behaviours were affected only by timepoint, with an increase observed between 0 h and 24 h post-transport. Neither plasma biochemical indicators nor flesh quality differed between treatments, while a significant effect of timepoint was found for plasma glucose (p = 0.045), plasma lactate (p = 0.021), and muscle pH (p < 0.001). Our study consequently did not find rough transport to impact fish physiology and flesh quality more than smooth transport, but behavioural results suggest there was a strong combined effect of fasting, exposure to a novel environment, and confinement over time. Future research would be valuable to study these effects on the welfare of transported bass, allowing for a longer recovery time and the use of potential mitigation options such as environmental enrichment.
期刊介绍:
This journal publishes relevant information on the behaviour of domesticated and utilized animals.
Topics covered include:
-Behaviour of farm, zoo and laboratory animals in relation to animal management and welfare
-Behaviour of companion animals in relation to behavioural problems, for example, in relation to the training of dogs for different purposes, in relation to behavioural problems
-Studies of the behaviour of wild animals when these studies are relevant from an applied perspective, for example in relation to wildlife management, pest management or nature conservation
-Methodological studies within relevant fields
The principal subjects are farm, companion and laboratory animals, including, of course, poultry. The journal also deals with the following animal subjects:
-Those involved in any farming system, e.g. deer, rabbits and fur-bearing animals
-Those in ANY form of confinement, e.g. zoos, safari parks and other forms of display
-Feral animals, and any animal species which impinge on farming operations, e.g. as causes of loss or damage
-Species used for hunting, recreation etc. may also be considered as acceptable subjects in some instances
-Laboratory animals, if the material relates to their behavioural requirements