{"title":"Hydrogen adsorption on titanium-decorated carbyne C12 ring: a DFT study","authors":"G. R. Pedrosa, H. L. Ong, A. R. Villagracia","doi":"10.1088/1755-1315/1372/1/012099","DOIUrl":null,"url":null,"abstract":"\n In the current landscape of increasing focus on green technology, hydrogen fuel emerges as a pivotal alternative energy source. While existing technology facilitates hydrogen use in fuel cells, the practicality of this fuel could be significantly enhanced with a more efficient and safer storage approach. Researchers are actively exploring one-dimensional systems as potential hydrogen storage solutions, yielding promising outcomes. A notable study delved into the hydrogen storage capacity and performance of a Ti-decorated carbyne ring using density functional theory calculations. The researchers observed a robust, non-deforming bond between the Ti adatom and the carbyne ring, displaying characteristics akin to ionic bonding. Detailed analyses of electronic properties, including density of states and band structure, highlighted a strong interaction through the alignment of p-orbitals with the Ti atom. Upon the adsorption of H2 onto the decorated carbyne ring, it was noted that the Ti-decorated systems could each adsorb up to six H2 molecules, exhibiting weak physisorption energies within the Van der Waals range. The charge density profile indicated a dipole-dipole interaction, affirming the potential of the material as a viable H2 storage medium. In conclusion, as green technology advances, hydrogen fuel, especially when stored innovatively with materials like the Ti-decorated carbyne ring, emerges as a crucial component in the pursuit of sustainable energy solutions.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the current landscape of increasing focus on green technology, hydrogen fuel emerges as a pivotal alternative energy source. While existing technology facilitates hydrogen use in fuel cells, the practicality of this fuel could be significantly enhanced with a more efficient and safer storage approach. Researchers are actively exploring one-dimensional systems as potential hydrogen storage solutions, yielding promising outcomes. A notable study delved into the hydrogen storage capacity and performance of a Ti-decorated carbyne ring using density functional theory calculations. The researchers observed a robust, non-deforming bond between the Ti adatom and the carbyne ring, displaying characteristics akin to ionic bonding. Detailed analyses of electronic properties, including density of states and band structure, highlighted a strong interaction through the alignment of p-orbitals with the Ti atom. Upon the adsorption of H2 onto the decorated carbyne ring, it was noted that the Ti-decorated systems could each adsorb up to six H2 molecules, exhibiting weak physisorption energies within the Van der Waals range. The charge density profile indicated a dipole-dipole interaction, affirming the potential of the material as a viable H2 storage medium. In conclusion, as green technology advances, hydrogen fuel, especially when stored innovatively with materials like the Ti-decorated carbyne ring, emerges as a crucial component in the pursuit of sustainable energy solutions.