A Deep Generative Model for Multi-Ship Trajectory Forecasting with Interaction Modelling

Mingda Zhu, Peihua Han, Weiwei Tian, R. Skulstad, Houxiang Zhang, Guoyuan Li
{"title":"A Deep Generative Model for Multi-Ship Trajectory Forecasting with Interaction Modelling","authors":"Mingda Zhu, Peihua Han, Weiwei Tian, R. Skulstad, Houxiang Zhang, Guoyuan Li","doi":"10.1115/1.4065866","DOIUrl":null,"url":null,"abstract":"\n Multi-agent modeling is a challenging issue in intelligent systems, which is further compounded by heavy and complex traffic in maritime contexts. Trajectory forecasting can enhance operation safety. Nonetheless, effectively modeling interactions among vessels poses a significant difficulty. Towards this end, we propose a conditional variational autoencoder approach to ship trajectory prediction in a dynamic and multi-modal encounter situation. Leveraging a shared Recurrent Neural Network architecture and attention mechanism, our method aggregates vessel trajectory data, enabling the model to learn and encapsulate meaningful encounter information across active vessels. We utilize Automatic Identification System data from the Oslofjord region to validate our approach. Through comprehensive experiments conducted on a four-ship encounter dataset, our proposed model demonstrates promising performance, by outperforming the benchmark models. Furthermore, we analyze the prediction model in a wide array of dimensions, showcasing its proficiency in complex ship behaviours learning, modeling ship interaction and approximating actual trajectories.","PeriodicalId":509714,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering","volume":"11 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-agent modeling is a challenging issue in intelligent systems, which is further compounded by heavy and complex traffic in maritime contexts. Trajectory forecasting can enhance operation safety. Nonetheless, effectively modeling interactions among vessels poses a significant difficulty. Towards this end, we propose a conditional variational autoencoder approach to ship trajectory prediction in a dynamic and multi-modal encounter situation. Leveraging a shared Recurrent Neural Network architecture and attention mechanism, our method aggregates vessel trajectory data, enabling the model to learn and encapsulate meaningful encounter information across active vessels. We utilize Automatic Identification System data from the Oslofjord region to validate our approach. Through comprehensive experiments conducted on a four-ship encounter dataset, our proposed model demonstrates promising performance, by outperforming the benchmark models. Furthermore, we analyze the prediction model in a wide array of dimensions, showcasing its proficiency in complex ship behaviours learning, modeling ship interaction and approximating actual trajectories.
利用交互建模进行多船轨迹预测的深度生成模型
多代理建模是智能系统中一个具有挑战性的问题,而海上繁忙复杂的交通使这一问题变得更加复杂。轨迹预测可以提高操作安全性。然而,对船舶之间的相互作用进行有效建模是一个重大难题。为此,我们提出了一种条件变异自动编码器方法,用于在动态和多模式遭遇情况下预测船舶轨迹。利用共享递归神经网络架构和注意力机制,我们的方法汇总了船舶轨迹数据,使模型能够学习和封装活跃船舶之间有意义的遭遇信息。我们利用奥斯陆峡湾地区的自动识别系统数据来验证我们的方法。通过在四艘船舶遭遇数据集上进行的综合实验,我们提出的模型表现出了良好的性能,优于基准模型。此外,我们还从多个维度对预测模型进行了分析,展示了该模型在复杂船舶行为学习、船舶互动建模和逼近实际轨迹方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信