Nonlinear resonant responses of a novel FGM sandwich cylindrical shell structure for supersonic flight vehicles based on 1:1 internal resonance between conjugate modes
{"title":"Nonlinear resonant responses of a novel FGM sandwich cylindrical shell structure for supersonic flight vehicles based on 1:1 internal resonance between conjugate modes","authors":"","doi":"10.1016/j.ast.2024.109372","DOIUrl":null,"url":null,"abstract":"<div><p>A new design scheme for the functionally graded material (FGM) sandwich cylindrical shell structure made of ceramic-FGM-carbon fiber composites is proposed, which is geared towards supersonic flight vehicles and has high specific stiffness and high-temperature resistance. We focus on analyzing the nonlinear resonant responses of the novel FGM sandwich cylindrical shell subjected to external excitation and aerodynamic force. Firstly, the mechanical properties of the novel FGM sandwich material are calculated, and then the nonlinear dynamic model of the FGM sandwich cylindrical shell is established based on the first order shear deformation theory (FSDT) and Hamilton's principle. Due to the axisymmetric property of the cylindrical shell, a 1:1 internal resonance between the driven and companion modes always exists in the perfect cylindrical shell. Taking this into consideration, the nonlinear resonant response problems of the FGM sandwich cylindrical shell are numerically simulated by combining the Galerkin method and the pseudo-arc length continuation method. Finally, the effects of complex parameters such as external excitation, aerodynamic force, aspect ratio, gradient index, and skin-core-skin ratio on the nonlinear resonant responses of the FGM sandwich cylindrical shell are investigated.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824005030","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
A new design scheme for the functionally graded material (FGM) sandwich cylindrical shell structure made of ceramic-FGM-carbon fiber composites is proposed, which is geared towards supersonic flight vehicles and has high specific stiffness and high-temperature resistance. We focus on analyzing the nonlinear resonant responses of the novel FGM sandwich cylindrical shell subjected to external excitation and aerodynamic force. Firstly, the mechanical properties of the novel FGM sandwich material are calculated, and then the nonlinear dynamic model of the FGM sandwich cylindrical shell is established based on the first order shear deformation theory (FSDT) and Hamilton's principle. Due to the axisymmetric property of the cylindrical shell, a 1:1 internal resonance between the driven and companion modes always exists in the perfect cylindrical shell. Taking this into consideration, the nonlinear resonant response problems of the FGM sandwich cylindrical shell are numerically simulated by combining the Galerkin method and the pseudo-arc length continuation method. Finally, the effects of complex parameters such as external excitation, aerodynamic force, aspect ratio, gradient index, and skin-core-skin ratio on the nonlinear resonant responses of the FGM sandwich cylindrical shell are investigated.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.