Seis-PnSn: A Global Million-Scale Benchmark Data Set of Pn and Sn Seismic Phases for Deep Learning

Hua Kong, Zhuowei Xiao, Yan Lü, Juan Li
{"title":"Seis-PnSn: A Global Million-Scale Benchmark Data Set of Pn and Sn Seismic Phases for Deep Learning","authors":"Hua Kong, Zhuowei Xiao, Yan Lü, Juan Li","doi":"10.1785/0220230379","DOIUrl":null,"url":null,"abstract":"\n The seismic phases Pn and Sn play a crucial role in investigating the velocity and anisotropic characteristics of the uppermost mantle. However, manually annotating these phases can be time-intensive and prone to subjective interpretation. Consequently, the use of travel-time data for these seismic phases remains limited. Despite the potential of deep learning to address this challenge, the scarcity of extensive training data sets for Pn and Sn presents significant constraints. To address this challenge, our research compiled a global million-scale benchmark data set of Pn and Sn seismic phases, namely Seis–PnSn. The data set is derived from earthquake events with epicenter distances ranging from 1.8° to 18°. The high-quality travel-time data used in this study are all from the International Seismological Centre and span the period 2000 to 2019. The waveform data were sourced from data centers located in different regions of the world under the International Federation of Digital Seismograph Networks. By leveraging the unique attributes of this data set, we trained baseline models and explored the prevailing challenges in deep-learning-based Pn and Sn phase picking as the scope transitions from local to regional epicenter distances. Our results show that the performance of the model is considerably enhanced after training on the proposed data set. Our study is a significant complement to the data foundation for future data-driven Pn and Sn seismic phase-picking studies, which will contribute to enhancing our understanding of the uppermost mantle structure of Earth, for example, the seismic velocity, anisotropy, and attenuation characteristics.","PeriodicalId":508466,"journal":{"name":"Seismological Research Letters","volume":"33 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The seismic phases Pn and Sn play a crucial role in investigating the velocity and anisotropic characteristics of the uppermost mantle. However, manually annotating these phases can be time-intensive and prone to subjective interpretation. Consequently, the use of travel-time data for these seismic phases remains limited. Despite the potential of deep learning to address this challenge, the scarcity of extensive training data sets for Pn and Sn presents significant constraints. To address this challenge, our research compiled a global million-scale benchmark data set of Pn and Sn seismic phases, namely Seis–PnSn. The data set is derived from earthquake events with epicenter distances ranging from 1.8° to 18°. The high-quality travel-time data used in this study are all from the International Seismological Centre and span the period 2000 to 2019. The waveform data were sourced from data centers located in different regions of the world under the International Federation of Digital Seismograph Networks. By leveraging the unique attributes of this data set, we trained baseline models and explored the prevailing challenges in deep-learning-based Pn and Sn phase picking as the scope transitions from local to regional epicenter distances. Our results show that the performance of the model is considerably enhanced after training on the proposed data set. Our study is a significant complement to the data foundation for future data-driven Pn and Sn seismic phase-picking studies, which will contribute to enhancing our understanding of the uppermost mantle structure of Earth, for example, the seismic velocity, anisotropy, and attenuation characteristics.
Seis-PnSn:用于深度学习的全球百万级 Pn 和 Sn 地震相位基准数据集
地震相 Pn 和 Sn 在研究最上地幔的速度和各向异性特征方面发挥着至关重要的作用。然而,人工标注这些地震相既费时,又容易产生主观解释。因此,这些地震相的走时数据的使用仍然有限。尽管深度学习具有应对这一挑战的潜力,但 Pn 和 Sn 大量训练数据集的稀缺带来了巨大的限制。为了应对这一挑战,我们的研究编制了一个全球百万规模的 Pn 和 Sn 震级基准数据集,即 Seis-PnSn。该数据集来自震中距 1.8° 至 18° 的地震事件。本研究使用的高质量走时数据全部来自国际地震中心,时间跨度为 2000 年至 2019 年。波形数据来自国际数字地震仪网络联合会下位于世界不同地区的数据中心。通过利用该数据集的独特属性,我们训练了基线模型,并探索了当范围从本地震中距离过渡到区域震中距离时,基于深度学习的 Pn 和 Sn 相位拾取所面临的挑战。我们的结果表明,在拟议的数据集上进行训练后,模型的性能大大提高。我们的研究是对未来数据驱动的 Pn 和 Sn 地震选相研究的数据基础的重要补充,这将有助于增强我们对地球最上地幔结构的理解,例如地震速度、各向异性和衰减特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信