Generalizing the Mittag-Leffler Function for Fractional Differentiation and Numerical Computation

Shankar Pariyar, Jeevan Kafle
{"title":"Generalizing the Mittag-Leffler Function for Fractional Differentiation and Numerical Computation","authors":"Shankar Pariyar, Jeevan Kafle","doi":"10.3126/nmsr.v41i1.67446","DOIUrl":null,"url":null,"abstract":"This work aims to investigate fractional differential equations using the Magnus Gösta Mittag-Leffler (GML) function and compare the finding with convention calculus approaches. It examines the solutions with one, two, and three parameters using the GML function for different values of α, β, and γ. We also test the convergence of the GML function of two parameters and check the validity and the computational time complexity. Moreover, we extend the GML function into three dimensions within the domain of complex variables utilizing numerical computing software. Graphs of the single-parameter GML E α (x), illustrates diverse disintegration rates across various α values, emphasizing dominant asymptotic trends over time periods.","PeriodicalId":165940,"journal":{"name":"The Nepali Mathematical Sciences Report","volume":"49 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Nepali Mathematical Sciences Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/nmsr.v41i1.67446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to investigate fractional differential equations using the Magnus Gösta Mittag-Leffler (GML) function and compare the finding with convention calculus approaches. It examines the solutions with one, two, and three parameters using the GML function for different values of α, β, and γ. We also test the convergence of the GML function of two parameters and check the validity and the computational time complexity. Moreover, we extend the GML function into three dimensions within the domain of complex variables utilizing numerical computing software. Graphs of the single-parameter GML E α (x), illustrates diverse disintegration rates across various α values, emphasizing dominant asymptotic trends over time periods.
为分数微分和数值计算推广米塔格-勒弗勒函数
本研究旨在利用马格努斯-哥斯达-米塔格-勒夫勒(GML)函数研究分微分方程,并将研究结果与传统微积分方法进行比较。我们还测试了两个参数的 GML 函数的收敛性,并检查了其有效性和计算时间复杂性。此外,我们还利用数值计算软件将 GML 函数扩展到复变域内的三维空间。单参数 GML E α (x) 的图表说明了不同 α 值下的不同解体率,强调了不同时间段的主要渐近趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信