Online Multi-Resource Allocation for Network Slicing in 5G with Distributed Algorithms

Xuebin Tang
{"title":"Online Multi-Resource Allocation for Network Slicing in 5G with Distributed Algorithms","authors":"Xuebin Tang","doi":"10.1142/s0218001423590218","DOIUrl":null,"url":null,"abstract":"With the increasing scale of mobile cellular network applications, 5G mobile network infrastructure provides customizable services to users in the form of network slices. How to effectively allocate existing resources in real dynamic networks with time-varying network utility is a key issue that previous work did not consider. This paper first initializes the multi-resource allocation problem of network slicing in an online manner, where the utility function is set to change over time. Therefore, we propose Metis, an online network slicing resource allocation framework that combines the time-varying nature of the network utility function given bandwidth and processing power constraints with the requirement of virtual network function isolation. The goal is to maximize the cumulative network utility in the long term and specify multiple resource allocation problems by utilizing concave optimization methods. In addition, a distributed algorithm based on the online alternating direction method of multipliers with regret optimization has been developed to achieve optimal resource allocation. Our mathematical analysis proves that Metis can provably converge to the optimal solution and the result of experiments demonstrates a steady state behavior of Metis, which converges in dynamic network settings.","PeriodicalId":508211,"journal":{"name":"International Journal of Pattern Recognition and Artificial Intelligence","volume":"21 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pattern Recognition and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218001423590218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing scale of mobile cellular network applications, 5G mobile network infrastructure provides customizable services to users in the form of network slices. How to effectively allocate existing resources in real dynamic networks with time-varying network utility is a key issue that previous work did not consider. This paper first initializes the multi-resource allocation problem of network slicing in an online manner, where the utility function is set to change over time. Therefore, we propose Metis, an online network slicing resource allocation framework that combines the time-varying nature of the network utility function given bandwidth and processing power constraints with the requirement of virtual network function isolation. The goal is to maximize the cumulative network utility in the long term and specify multiple resource allocation problems by utilizing concave optimization methods. In addition, a distributed algorithm based on the online alternating direction method of multipliers with regret optimization has been developed to achieve optimal resource allocation. Our mathematical analysis proves that Metis can provably converge to the optimal solution and the result of experiments demonstrates a steady state behavior of Metis, which converges in dynamic network settings.
利用分布式算法实现 5G 网络切片的在线多资源分配
随着移动蜂窝网络应用规模的不断扩大,5G 移动网络基础设施以网络切片的形式为用户提供可定制的服务。如何在网络效用随时间变化的真实动态网络中有效分配现有资源,是以往工作没有考虑的关键问题。本文首先以在线方式初始化了网络切片的多资源分配问题,其中设置了随时间变化的效用函数。因此,我们提出了在线网络切片资源分配框架 Metis,该框架将带宽和处理能力限制下网络效用函数的时变性与虚拟网络功能隔离的要求相结合。其目标是在长期内最大化累积网络效用,并利用凹优化方法指定多个资源分配问题。此外,我们还开发了一种基于在线交替乘数方向法和遗憾优化的分布式算法,以实现最优资源分配。我们的数学分析证明,Metis 可以收敛到最优解,实验结果也证明了 Metis 的稳态行为,在动态网络环境中也能收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信