Finer-Grained Hardness of Kernel Density Estimation

Josh Alman, Yunfeng Guan
{"title":"Finer-Grained Hardness of Kernel Density Estimation","authors":"Josh Alman, Yunfeng Guan","doi":"10.4230/LIPIcs.CCC.2024.35","DOIUrl":null,"url":null,"abstract":"In batch Kernel Density Estimation (KDE) for a kernel function $f$, we are given as input $2n$ points $x^{(1)}, \\cdots, x^{(n)}, y^{(1)}, \\cdots, y^{(n)}$ in dimension $m$, as well as a vector $v \\in \\mathbb{R}^n$. These inputs implicitly define the $n \\times n$ kernel matrix $K$ given by $K[i,j] = f(x^{(i)}, y^{(j)})$. The goal is to compute a vector $v$ which approximates $K w$ with $|| Kw - v||_\\infty<\\varepsilon ||w||_1$. A recent line of work has proved fine-grained lower bounds conditioned on SETH. Backurs et al. first showed the hardness of KDE for Gaussian-like kernels with high dimension $m = \\Omega(\\log n)$ and large scale $B = \\Omega(\\log n)$. Alman et al. later developed new reductions in roughly this same parameter regime, leading to lower bounds for more general kernels, but only for very small error $\\varepsilon<2^{- \\log^{\\Omega(1)} (n)}$. In this paper, we refine the approach of Alman et al. to show new lower bounds in all parameter regimes, closing gaps between the known algorithms and lower bounds. In the setting where $m = C\\log n$ and $B = o(\\log n)$, we prove Gaussian KDE requires $n^{2-o(1)}$ time to achieve additive error $\\varepsilon<\\Omega(m/B)^{-m}$, matching the performance of the polynomial method up to low-order terms. In the low dimensional setting $m = o(\\log n)$, we show that Gaussian KDE requires $n^{2-o(1)}$ time to achieve $\\varepsilon$ such that $\\log \\log (\\varepsilon^{-1})>\\tilde \\Omega ((\\log n)/m)$, matching the error bound achievable by FMM up to low-order terms. To our knowledge, no nontrivial lower bound was previously known in this regime. Our new lower bounds make use of an intricate analysis of a special case of the kernel matrix -- the `counting matrix'. As a key technical lemma, we give a novel approach to bounding the entries of its inverse by using Schur polynomials from algebraic combinatorics.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"26 1‐2","pages":"35:1-35:21"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2024.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In batch Kernel Density Estimation (KDE) for a kernel function $f$, we are given as input $2n$ points $x^{(1)}, \cdots, x^{(n)}, y^{(1)}, \cdots, y^{(n)}$ in dimension $m$, as well as a vector $v \in \mathbb{R}^n$. These inputs implicitly define the $n \times n$ kernel matrix $K$ given by $K[i,j] = f(x^{(i)}, y^{(j)})$. The goal is to compute a vector $v$ which approximates $K w$ with $|| Kw - v||_\infty<\varepsilon ||w||_1$. A recent line of work has proved fine-grained lower bounds conditioned on SETH. Backurs et al. first showed the hardness of KDE for Gaussian-like kernels with high dimension $m = \Omega(\log n)$ and large scale $B = \Omega(\log n)$. Alman et al. later developed new reductions in roughly this same parameter regime, leading to lower bounds for more general kernels, but only for very small error $\varepsilon<2^{- \log^{\Omega(1)} (n)}$. In this paper, we refine the approach of Alman et al. to show new lower bounds in all parameter regimes, closing gaps between the known algorithms and lower bounds. In the setting where $m = C\log n$ and $B = o(\log n)$, we prove Gaussian KDE requires $n^{2-o(1)}$ time to achieve additive error $\varepsilon<\Omega(m/B)^{-m}$, matching the performance of the polynomial method up to low-order terms. In the low dimensional setting $m = o(\log n)$, we show that Gaussian KDE requires $n^{2-o(1)}$ time to achieve $\varepsilon$ such that $\log \log (\varepsilon^{-1})>\tilde \Omega ((\log n)/m)$, matching the error bound achievable by FMM up to low-order terms. To our knowledge, no nontrivial lower bound was previously known in this regime. Our new lower bounds make use of an intricate analysis of a special case of the kernel matrix -- the `counting matrix'. As a key technical lemma, we give a novel approach to bounding the entries of its inverse by using Schur polynomials from algebraic combinatorics.
更精细的核密度估计难度
在针对核函数 $f$ 的批量核密度估计(KDE)中,我们需要输入尺寸为 $m$ 的 2n 个点 $x^{(1)}, \cdots, x^{(n)}, y^{(1)}, \cdots, y^{(n)}$,以及 \mathbb{R}^n$ 中的一个向量 $v。这些输入隐式地定义了 $n \times n$ 的内核矩阵 $K$,即 $K[i,j] = f(x^{(i)}, y^{(j)})$。我们的目标是计算出一个向量 $v$,该向量以 $|| Kw - v||_\infty\tilde \Omega ((\log n)/m)$ 近似 $K w$,与 FMM 在低阶项以内可实现的误差约束相匹配。据我们所知,在这一机制中,以前还没有非难的下界。我们的新下界利用了对核矩阵的一种特殊情况--"计数矩阵 "的复杂分析。作为一个关键的技术性 Lemma,我们给出了一种新方法,即利用代数组合学中的舒尔多项式来约束其逆矩阵的条目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信