Identification of ECA rules forming MACA in periodic boundary condition

Som Banerjee, M. Dalui
{"title":"Identification of ECA rules forming MACA in periodic boundary condition","authors":"Som Banerjee, M. Dalui","doi":"10.1142/s0129183124501730","DOIUrl":null,"url":null,"abstract":"Cellular automaton (CA) is a computing model which is emerging rapidly. It is largely used in different types of scientific applications and simulations due to its ability to solve complex problems using simple rule(s). Cellular automata (CAs) are used in different types of applications like cryptography, VLSI systems, fault detection, etc. Typically, most of these applications utilize one-dimensional, 2-state, 3-neighborhood CAs. This paper explores the concept of Next State RMT Transition Diagram (NSRTD) for characterization of all the Elementary Cellular Automata (ECA) rules in periodic boundary condition leading to the identification of all ECA rules forming more than two fixed points (referred to as Single Length Cycle Multi-Attractor CA (MACA)) for an arbitrary CA length (n). For this, the 88 Wolfram classification rules and their equivalent rules have been utilized to reduce the search complexity by avoiding exhaustive searching on all the 256 ECA rules.","PeriodicalId":505629,"journal":{"name":"International Journal of Modern Physics C","volume":"5 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129183124501730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular automaton (CA) is a computing model which is emerging rapidly. It is largely used in different types of scientific applications and simulations due to its ability to solve complex problems using simple rule(s). Cellular automata (CAs) are used in different types of applications like cryptography, VLSI systems, fault detection, etc. Typically, most of these applications utilize one-dimensional, 2-state, 3-neighborhood CAs. This paper explores the concept of Next State RMT Transition Diagram (NSRTD) for characterization of all the Elementary Cellular Automata (ECA) rules in periodic boundary condition leading to the identification of all ECA rules forming more than two fixed points (referred to as Single Length Cycle Multi-Attractor CA (MACA)) for an arbitrary CA length (n). For this, the 88 Wolfram classification rules and their equivalent rules have been utilized to reduce the search complexity by avoiding exhaustive searching on all the 256 ECA rules.
周期性边界条件下形成澳门威尼斯人官网程的 ECA 规则识别
细胞自动机(CA)是一种正在迅速兴起的计算模型。由于它能用简单的规则解决复杂的问题,因此在不同类型的科学应用和模拟中得到广泛应用。蜂窝自动机 (CA) 可用于不同类型的应用,如密码学、超大规模集成电路系统、故障检测等。通常,这些应用大多使用一维、2 状态、3 邻域 CA。本文探讨了下一状态 RMT 转换图(NSRTD)的概念,用于描述周期性边界条件下的所有基本单元自动机(ECA)规则,从而识别出任意 CA 长度(n)下形成两个以上固定点的所有 ECA 规则(称为单长周期多簇 CA(MACA))。为此,我们利用了 88 条 Wolfram 分类规则及其等效规则,避免对所有 256 条 ECA 规则进行穷举搜索,从而降低了搜索复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信