{"title":"An optimization scheme for vehicular edge computing based on Lyapunov function and deep reinforcement learning","authors":"Lin Zhu, Long Tan, Bingxian Li, Huizi Tian","doi":"10.1049/cmu2.12800","DOIUrl":null,"url":null,"abstract":"<p>Traditional vehicular edge computing research usually ignores the mobility of vehicles, the dynamic variability of the vehicular edge environment, the large amount of real-time data required for vehicular edge computing, the limited resources of edge servers, and collaboration issues. In response to these challenges, this article proposes a vehicular edge computing optimization scheme based on the Lyapunov function and Deep Reinforcement Learning. In this solution, this article uses Digital Twin technology (DT) to simulate the vehicular edge environment. The edge server DT is used to simulate the vehicular edge environment under the edge server, and the base station DT is used to simulate the entire vehicular edge system environment. Based on the real-time data obtained from DT simulation, this paper defines the Lyapunov function to simplify the migration cost of vehicle tasks between servers into a multi-objective dynamic optimization problem. It solves the problem by applying the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Experimental results show that compared with other algorithms, this scheme can effectively optimize the allocation and collaboration of vehicular edge computing resources and reduce the delay and energy consumption caused by vehicle task processing.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 15","pages":"908-924"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12800","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12800","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional vehicular edge computing research usually ignores the mobility of vehicles, the dynamic variability of the vehicular edge environment, the large amount of real-time data required for vehicular edge computing, the limited resources of edge servers, and collaboration issues. In response to these challenges, this article proposes a vehicular edge computing optimization scheme based on the Lyapunov function and Deep Reinforcement Learning. In this solution, this article uses Digital Twin technology (DT) to simulate the vehicular edge environment. The edge server DT is used to simulate the vehicular edge environment under the edge server, and the base station DT is used to simulate the entire vehicular edge system environment. Based on the real-time data obtained from DT simulation, this paper defines the Lyapunov function to simplify the migration cost of vehicle tasks between servers into a multi-objective dynamic optimization problem. It solves the problem by applying the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Experimental results show that compared with other algorithms, this scheme can effectively optimize the allocation and collaboration of vehicular edge computing resources and reduce the delay and energy consumption caused by vehicle task processing.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf