Radar-Based Approach for Side-Slip Gradient Estimation

Luis Diener, Jens Kalkkuhl, Thomas Schirle
{"title":"Radar-Based Approach for Side-Slip Gradient Estimation","authors":"Luis Diener, Jens Kalkkuhl, Thomas Schirle","doi":"10.4271/2024-01-2976","DOIUrl":null,"url":null,"abstract":"This paper presents a novel and robust approach to estimate both the side-slip gradient and the lateral velocity by integrating radar-doppler measurements into a vehicle motion observer. In ego-motion estimation the side-slip gradient is used to model the lateral velocity of the vehicle, since it cannot be measured directly. The algorithm only requires low-dynamic, steady-state excitation and is based on an adaptive Kalman-Filter assuring high accuracy and stability. The number of radar sensors can be chosen arbitrarily. The algorithm has shown to estimate the side-slip gradient within 10% of its true value. It also rejects radar outliers and does not depend on permanent availability of the radar sensors. The approach requires little tuning which makes it applicable to mass-produced vehicles.","PeriodicalId":510086,"journal":{"name":"SAE Technical Paper Series","volume":"27 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2024-01-2976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel and robust approach to estimate both the side-slip gradient and the lateral velocity by integrating radar-doppler measurements into a vehicle motion observer. In ego-motion estimation the side-slip gradient is used to model the lateral velocity of the vehicle, since it cannot be measured directly. The algorithm only requires low-dynamic, steady-state excitation and is based on an adaptive Kalman-Filter assuring high accuracy and stability. The number of radar sensors can be chosen arbitrarily. The algorithm has shown to estimate the side-slip gradient within 10% of its true value. It also rejects radar outliers and does not depend on permanent availability of the radar sensors. The approach requires little tuning which makes it applicable to mass-produced vehicles.
基于雷达的侧滑梯度估算方法
本文提出了一种新颖、稳健的方法,通过将雷达多普勒测量数据整合到车辆运动观测器中,来估算侧滑梯度和横向速度。在自我运动估计中,侧滑梯度被用来模拟车辆的横向速度,因为它无法直接测量。该算法只需要低动态、稳定的激励,并基于自适应卡尔曼滤波器,确保高精度和稳定性。雷达传感器的数量可以任意选择。事实证明,该算法对侧滑梯度的估计不超过其真实值的 10%。该算法还能剔除雷达异常值,并且不依赖于雷达传感器的永久可用性。该方法几乎不需要调整,因此适用于大规模生产的车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信