Evaluation of ethanol-gasoline blends in SI engines using experimental and ANN techniques

Mohamed S. Hofny, Nouby M. Ghazaly, Ahmed N. Shmroukh, Mostafa Abouelsoud
{"title":"Evaluation of ethanol-gasoline blends in SI engines using experimental and ANN techniques","authors":"Mohamed S. Hofny, Nouby M. Ghazaly, Ahmed N. Shmroukh, Mostafa Abouelsoud","doi":"10.1088/2631-8695/ad5f18","DOIUrl":null,"url":null,"abstract":"\n Fuel combustion has become a major global concern, with much research focusing on the various emissions resulting from different types of fuels. Due to the harmful pollutant emissions from fossil fuels, the world has turned to renewable and alternative fuels to limit toxic emissions and greenhouse effects. Ethanol is a biofuel that, when used in spark ignition engine with gasoline can improve the octane number, combustion efficiency, and produce less emissions. The current research studies the effect of different ethanol blends E0, E5, E10, and E15 with gasoline 92 on engine performance parameters and emissions of a GX35 four stroke engine at different engine speeds. The results along the speed range reveal that increasing ethanol amount leads to an average increase of 2.7%, 1%, and 1.1% in brake power (BP), brake thermal efficiency (BTE), and CO2 emissions, respectively. Meanwhile, it causes an average decrease of 28 ℃, 3%, 15 ppm, and 0.18% in exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), HC, and CO emissions respectively. Moreover, the current study develops an Artificial Neural Networks (ANN) model for predicting performance and emissions of spark ignition (SI) engine. Python programming language is used for ANN coding to train and validate the ANN model with E15. Regression plots were generated to visualize the correlation between the target and predicted data, indicating outstanding performance. The results confirmed the model's reliability for BP, EGT, CO, CO2, and HC parameters with R2 value more than 0.99 and with acceptable performance for BSFC and BTE with R2 of 0.9339, and 0.9708, respectively.","PeriodicalId":505725,"journal":{"name":"Engineering Research Express","volume":"10 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad5f18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fuel combustion has become a major global concern, with much research focusing on the various emissions resulting from different types of fuels. Due to the harmful pollutant emissions from fossil fuels, the world has turned to renewable and alternative fuels to limit toxic emissions and greenhouse effects. Ethanol is a biofuel that, when used in spark ignition engine with gasoline can improve the octane number, combustion efficiency, and produce less emissions. The current research studies the effect of different ethanol blends E0, E5, E10, and E15 with gasoline 92 on engine performance parameters and emissions of a GX35 four stroke engine at different engine speeds. The results along the speed range reveal that increasing ethanol amount leads to an average increase of 2.7%, 1%, and 1.1% in brake power (BP), brake thermal efficiency (BTE), and CO2 emissions, respectively. Meanwhile, it causes an average decrease of 28 ℃, 3%, 15 ppm, and 0.18% in exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), HC, and CO emissions respectively. Moreover, the current study develops an Artificial Neural Networks (ANN) model for predicting performance and emissions of spark ignition (SI) engine. Python programming language is used for ANN coding to train and validate the ANN model with E15. Regression plots were generated to visualize the correlation between the target and predicted data, indicating outstanding performance. The results confirmed the model's reliability for BP, EGT, CO, CO2, and HC parameters with R2 value more than 0.99 and with acceptable performance for BSFC and BTE with R2 of 0.9339, and 0.9708, respectively.
使用实验和 ANN 技术评估 SI 发动机中的乙醇汽油混合物
燃料燃烧已成为全球关注的一个主要问题,许多研究都集中在不同类型燃料产生的各种排放物上。由于化石燃料排放的污染物对人体有害,世界各国纷纷转向使用可再生和替代燃料,以限制有毒物质的排放和温室效应。乙醇是一种生物燃料,与汽油一起用于火花点火发动机时,可以提高辛烷值、燃烧效率并减少排放。本研究探讨了不同乙醇混合物 E0、E5、E10 和 E15 与 92 号汽油在不同发动机转速下对 GX35 四冲程发动机性能参数和排放的影响。研究结果表明,在不同转速范围内,乙醇含量的增加会导致制动功率(BP)、制动热效率(BTE)和二氧化碳排放量分别平均增加 2.7%、1% 和 1.1%。同时,它导致废气温度(EGT)、制动比油耗(BSFC)、HC 和 CO 排放分别平均降低 28 ℃、3%、15 ppm 和 0.18%。此外,本研究还开发了一个人工神经网络(ANN)模型,用于预测火花点火(SI)发动机的性能和排放。使用 Python 编程语言对 ANN 进行编码,用 E15 对 ANN 模型进行训练和验证。生成的回归图直观地显示了目标数据和预测数据之间的相关性,显示了出色的性能。结果证实了该模型在 BP、EGT、CO、CO2 和 HC 参数方面的可靠性,R2 值大于 0.99;在 BSFC 和 BTE 方面的性能也可以接受,R2 值分别为 0.9339 和 0.9708。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信