D. Gireesha, H. V. Prabhu, P. V. Patil, G. V. Gowda, S.K. Deshpande, K. N. Vijaykumar, Gangadhara Doggalli
{"title":"Integrated Management of Stem and Root Rot of Cowpea Caused by Macrophomina phaseolina (Tassi.) Goid. using Fungicides, Bioagents and Organic Manures","authors":"D. Gireesha, H. V. Prabhu, P. V. Patil, G. V. Gowda, S.K. Deshpande, K. N. Vijaykumar, Gangadhara Doggalli","doi":"10.18805/lr-5325","DOIUrl":null,"url":null,"abstract":"Background: Cowpea crop is affected by various biotic and abiotic stresses which are responsible for its poor quality and low yield resulting in severe economic losses. Among the root diseases, stem and root rot caused by Macrophomina phaseolina is an important disease causing the yield losses ranging from 50-55 per cent. So, there is a need to formulate suitable management practices against root rot. Methods: Field experiment was laid-out in a randomized complete block design with three replications at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad during rabi 2021-22 and 2022-23 to determine the efficacy of economically viable and effective fungicides, bioagents and organic manures against stem and root rot of cowpea. The per cent disease incidence and yield per hectare were taken into consideration for statistical analysis. Result: In laboratory experiments, it was found that, the seed dressing fungicides mancozeb 50% + carbendazim 25% WP and carboxin 37.5% + thiram 37.5% DS were the most effective against M. phaseolina. Similarly, among the bioagents tested, T. harzianum was the most effective followed by T. Viride and P. fluorescens. A two-years evaluation of nine integrated treatment modules for rabi seasons revealed that, seed treatment with carboxin 37.5% + thiram 37.5 % WS resulted in the lowest disease incidence and the highest grain yield, 100 seed weight and B:C ratio. Cowpea stem and root rot incidence was increased with soil temperature and decreased with soil moisture.\n","PeriodicalId":17998,"journal":{"name":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","volume":"6 2‐3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18805/lr-5325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cowpea crop is affected by various biotic and abiotic stresses which are responsible for its poor quality and low yield resulting in severe economic losses. Among the root diseases, stem and root rot caused by Macrophomina phaseolina is an important disease causing the yield losses ranging from 50-55 per cent. So, there is a need to formulate suitable management practices against root rot. Methods: Field experiment was laid-out in a randomized complete block design with three replications at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad during rabi 2021-22 and 2022-23 to determine the efficacy of economically viable and effective fungicides, bioagents and organic manures against stem and root rot of cowpea. The per cent disease incidence and yield per hectare were taken into consideration for statistical analysis. Result: In laboratory experiments, it was found that, the seed dressing fungicides mancozeb 50% + carbendazim 25% WP and carboxin 37.5% + thiram 37.5% DS were the most effective against M. phaseolina. Similarly, among the bioagents tested, T. harzianum was the most effective followed by T. Viride and P. fluorescens. A two-years evaluation of nine integrated treatment modules for rabi seasons revealed that, seed treatment with carboxin 37.5% + thiram 37.5 % WS resulted in the lowest disease incidence and the highest grain yield, 100 seed weight and B:C ratio. Cowpea stem and root rot incidence was increased with soil temperature and decreased with soil moisture.