The Use of K-Means Algorithm Clustering in Grouping Life Expectancy (Case Study: Provinces in Indonesia)

Dimas Reza Nugraha, Ahmad Turmudi Zy, Aswan Supriyadi Sunge
{"title":"The Use of K-Means Algorithm Clustering in Grouping Life Expectancy (Case Study: Provinces in Indonesia)","authors":"Dimas Reza Nugraha, Ahmad Turmudi Zy, Aswan Supriyadi Sunge","doi":"10.47709/cnahpc.v6i3.4171","DOIUrl":null,"url":null,"abstract":"Life expectancy is defined as information that illustrates the age of the death of a population. Life expectancy is a general picture of the state of a region. If the infant mortality rate is high, then the life expectancy in the area is low. And vice versa, if the infant mortality rate is low, the life expectancy in the region is high. Life expectancy is also a benchmark for government actions in improving the welfare of society and the human development index. For this reason, it is necessary to group life expectancy data to make it easier to determine the provinces with high, middle, and low life expectancy. The results of cluster testing using the silhouette score method showed that two subjects had a low silhouette score level, which caused the cluster value to be less than optimal, namely East Java  & Gorontalo. The clustering results found that the cluster was divided into 3, namely cluster 1, with a high level of life expectancy consisting of 10 provinces, namely East Java, Riau, North Sulawesi, Bali, North Kalimantan, DKI Jakarta, West Java, Central Java, East Kalimantan and Special Region of Yogyakarta. Cluster 2 has a level of middle-life expectancy consisting of 18 provinces, namely Gorontalo, North Maluku, Central Sulawesi, South Kalimantan, North Sumatra, Bengkulu, West Sumatra, Central Kalimantan, Aceh, South Sumatra, Banten, Kep. Riau, South Sulawesi, Kep. Bangka Belitung, Lampung, West Kalimantan, Southeast Sulawesi and Jambi. Cluster 3, with a low level of life expectancy, consists of 6 provinces, namely West Sulawesi, Papua, Maluku, West Papua, West Nusa Tenggara, and East Nusa Tenggara.","PeriodicalId":15605,"journal":{"name":"Journal Of Computer Networks, Architecture and High Performance Computing","volume":"85 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Computer Networks, Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47709/cnahpc.v6i3.4171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Life expectancy is defined as information that illustrates the age of the death of a population. Life expectancy is a general picture of the state of a region. If the infant mortality rate is high, then the life expectancy in the area is low. And vice versa, if the infant mortality rate is low, the life expectancy in the region is high. Life expectancy is also a benchmark for government actions in improving the welfare of society and the human development index. For this reason, it is necessary to group life expectancy data to make it easier to determine the provinces with high, middle, and low life expectancy. The results of cluster testing using the silhouette score method showed that two subjects had a low silhouette score level, which caused the cluster value to be less than optimal, namely East Java  & Gorontalo. The clustering results found that the cluster was divided into 3, namely cluster 1, with a high level of life expectancy consisting of 10 provinces, namely East Java, Riau, North Sulawesi, Bali, North Kalimantan, DKI Jakarta, West Java, Central Java, East Kalimantan and Special Region of Yogyakarta. Cluster 2 has a level of middle-life expectancy consisting of 18 provinces, namely Gorontalo, North Maluku, Central Sulawesi, South Kalimantan, North Sumatra, Bengkulu, West Sumatra, Central Kalimantan, Aceh, South Sumatra, Banten, Kep. Riau, South Sulawesi, Kep. Bangka Belitung, Lampung, West Kalimantan, Southeast Sulawesi and Jambi. Cluster 3, with a low level of life expectancy, consists of 6 provinces, namely West Sulawesi, Papua, Maluku, West Papua, West Nusa Tenggara, and East Nusa Tenggara.
K-Means 算法聚类在预期寿命分组中的应用(案例研究:印度尼西亚各省)
预期寿命的定义是说明人口死亡年龄的信息。预期寿命可以大致反映一个地区的状况。如果婴儿死亡率高,那么该地区的预期寿命就低。反之亦然,如果婴儿死亡率低,该地区的预期寿命就高。预期寿命也是政府改善社会福利和人类发展指数的基准。因此,有必要对预期寿命数据进行分组,以便于确定预期寿命高、中、低的省份。使用剪影分值法进行聚类检验的结果显示,有两个对象的剪影分值水平较低,导致聚类值低于最佳值,这两个对象分别是东爪哇和哥伦布。聚类结果发现,聚类分为 3 个,即聚类 1,预期寿命水平较高,由 10 个省组成,即东爪哇、廖内、北苏拉威西、巴厘、北加里曼丹、DKI 雅加达、西爪哇、中爪哇、东加里曼丹和日惹特区。第 2 组的预期寿命处于中等水平,由 18 个省组成,即哥伦塔罗、北马鲁古、中苏拉威西、南加里曼丹、北苏门答腊、明古鲁、西苏门答腊、中加里曼丹、亚齐、南苏门答腊、万丹、凯普、廖内、南苏拉威西和日惹特区。廖内省、南苏拉威西省、凯普省邦加勿里洞,楠榜,西加里曼丹,东南苏拉威西和占碑。第 3 组预期寿命较低,由 6 个省组成,即西苏拉威西省、巴布亚省、马鲁古省、西巴布亚省、西努沙登加拉省和东努沙登加拉省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信