Samuel-Soma M. Ajibade, Muhammed Basheer Jasser, D. O. Alebiosu, Ismail Ahmad Al-Qasem Al-Hadi, G. Al-Dharhani, Farrukh Hassan, B. Gyamfi
{"title":"Uncovering the Dynamics in the Application of Machine learning in Computational Finance: A Bibliometric and Social Network Analysis","authors":"Samuel-Soma M. Ajibade, Muhammed Basheer Jasser, D. O. Alebiosu, Ismail Ahmad Al-Qasem Al-Hadi, G. Al-Dharhani, Farrukh Hassan, B. Gyamfi","doi":"10.32479/ijefi.16399","DOIUrl":null,"url":null,"abstract":"This paper examined the research landscape on the applications of machine learning in finance (MLF) research based on the published documents on the topic indexed in the Scopus database from 2007 to 2021. Consequently, the publication trends on the published documents data were examined to determine the most prolific authors, institutions, countries, and funding bodies on the topic. Next, bibliometric analysis (BA) was employed to analyse and map co-authorship networks, keywords occurrences, and citations. Lastly, a systematic literature review was carried out to examine the scientific and technological developments in the field. The results showed that the number of published documents on MLF research has soared tremendously from 5 to 398 between 2007 and 2021, which signifies an enormous increase (~7,900%) in the subject area. The high productivity is partly ascribed to the research activities of the most research-active academic stakeholders namely Chihfong Tsai (National Central University in Taiwan) and Stanford University (United States). However, the National Natural Science Foundation of China (NSFC) is the most active funder in the United States and has the largest number of published documents. BA analysis revealed high collaboration rates, published documents, and citations among the stakeholders. Keywords occurrence analysis revealed that MLF research is a highly inter- and multidisciplinary area with numerous hotspots and themes ranging from systems, algorithms and techniques to the security and crime prevention in Finance using ML. Citation analysis, the most prominent (and by extension the most prestigious) source titles on MLF are IEEE Access, Expert Systems with Applications and ACM International Conference Proceedings Series (ACM-ICPS). The systematic literature review revealed the various areas and applications of MLF research, particularly in the areas of predictive/forecasting analytics, credit assessment and management, as well as supply chain, carbon trading, neural networks, and artificial intelligence, among others. It is expected that MLF research activities and their impact on the wider global society will continue to increase in the coming years","PeriodicalId":30329,"journal":{"name":"International Journal of Economics and Financial Issues","volume":"158 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Economics and Financial Issues","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32479/ijefi.16399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examined the research landscape on the applications of machine learning in finance (MLF) research based on the published documents on the topic indexed in the Scopus database from 2007 to 2021. Consequently, the publication trends on the published documents data were examined to determine the most prolific authors, institutions, countries, and funding bodies on the topic. Next, bibliometric analysis (BA) was employed to analyse and map co-authorship networks, keywords occurrences, and citations. Lastly, a systematic literature review was carried out to examine the scientific and technological developments in the field. The results showed that the number of published documents on MLF research has soared tremendously from 5 to 398 between 2007 and 2021, which signifies an enormous increase (~7,900%) in the subject area. The high productivity is partly ascribed to the research activities of the most research-active academic stakeholders namely Chihfong Tsai (National Central University in Taiwan) and Stanford University (United States). However, the National Natural Science Foundation of China (NSFC) is the most active funder in the United States and has the largest number of published documents. BA analysis revealed high collaboration rates, published documents, and citations among the stakeholders. Keywords occurrence analysis revealed that MLF research is a highly inter- and multidisciplinary area with numerous hotspots and themes ranging from systems, algorithms and techniques to the security and crime prevention in Finance using ML. Citation analysis, the most prominent (and by extension the most prestigious) source titles on MLF are IEEE Access, Expert Systems with Applications and ACM International Conference Proceedings Series (ACM-ICPS). The systematic literature review revealed the various areas and applications of MLF research, particularly in the areas of predictive/forecasting analytics, credit assessment and management, as well as supply chain, carbon trading, neural networks, and artificial intelligence, among others. It is expected that MLF research activities and their impact on the wider global society will continue to increase in the coming years
期刊介绍:
International Journal of Economics and Financial Issues (IJEFI) is the international academic journal, and is a double-blind, peer-reviewed academic journal publishing high quality conceptual and measure development articles in the areas of economics, finance and related disciplines. The journal has a worldwide audience. The journal''s goal is to stimulate the development of economics, finance and related disciplines theory worldwide by publishing interesting articles in a highly readable format. The journal is published Bimonthly (6 issues per year) and covers a wide variety of topics including (but not limited to): Macroeconomcis International Economics Econometrics Business Economics Growth and Development Regional Economics Tourism Economics International Trade Finance International Finance Macroeconomic Aspects of Finance General Financial Markets Financial Institutions Behavioral Finance Public Finance Asset Pricing Financial Management Options and Futures Taxation, Subsidies and Revenue Corporate Finance and Governance Money and Banking Markets and Institutions of Emerging Markets Public Economics and Public Policy Financial Economics Applied Financial Econometrics Financial Risk Analysis Risk Management Portfolio Management Financial Econometrics.