Using neural networks for non-invasive determination of glycated hemoglobin levels, illustrated by the application of an innovative portable glucometer in clinical practice
E. Poliker, Konstantin A. Koshechkin, Alexander M. Timokhin, Ekaterina V. Klyukina, Ekaterina D. Belyakova, Artem M. Brovko, Alina S. Lalayan, A. Ermolaeva
{"title":"Using neural networks for non-invasive determination of glycated hemoglobin levels, illustrated by the application of an innovative portable glucometer in clinical practice","authors":"E. Poliker, Konstantin A. Koshechkin, Alexander M. Timokhin, Ekaterina V. Klyukina, Ekaterina D. Belyakova, Artem M. Brovko, Alina S. Lalayan, A. Ermolaeva","doi":"10.17816/dd627099","DOIUrl":null,"url":null,"abstract":"BACKGROUND: In the last decade, there has been a significant increase in interest in non-invasive monitoring of blood glucose levels [1]. This is driven by the desire to reduce patient discomfort, as well as the risk of infections associated with traditional invasive methods [2]. Raman spectroscopy, considered as a promising approach for non-invasive measurements [3], combined with machine learning, has the potential to lead to more accurate and faster diagnostic methods for conditions related to glucose imbalances [4]. \nAIMS: Development and validation of a new portable glucometer based on Raman spectroscopy using machine learning methods for non-invasive determination of glycated hemoglobin (HbA1c) levels. \nMATERIALS AND METHODS: The study was conducted on a sample of 100 volunteers of different age groups and genders, with varying health statuses, including individuals with type 1 and type 2 diabetes and those without diabetes. To collect data, we used a portable device developed by us, based on the registration of Raman spectra with laser excitation at 638 nm. The data were analyzed using Support Vector Machine neural networks. \nRESULTS: After processing the spectroscopic measurements using Support Vector Machine, the system showed sensitivity (95,7%) and specificity (84,2%) in determining HbA1c levels comparable to traditional methods such as high-performance liquid chromatography. It was found that the algorithm is sufficiently adaptive and can be used across a wide range of skin types, regardless of the age and gender of the participants. The results suggest the possibility of using the developed device in clinical practice. \nCONCLUSION: The developed portable glucometer based on Raman spectroscopy combined with machine learning algorithms could be a promising step towards non-invasive and continuous monitoring of glycemic levels in patients with diabetes.","PeriodicalId":34831,"journal":{"name":"Digital Diagnostics","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/dd627099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND: In the last decade, there has been a significant increase in interest in non-invasive monitoring of blood glucose levels [1]. This is driven by the desire to reduce patient discomfort, as well as the risk of infections associated with traditional invasive methods [2]. Raman spectroscopy, considered as a promising approach for non-invasive measurements [3], combined with machine learning, has the potential to lead to more accurate and faster diagnostic methods for conditions related to glucose imbalances [4].
AIMS: Development and validation of a new portable glucometer based on Raman spectroscopy using machine learning methods for non-invasive determination of glycated hemoglobin (HbA1c) levels.
MATERIALS AND METHODS: The study was conducted on a sample of 100 volunteers of different age groups and genders, with varying health statuses, including individuals with type 1 and type 2 diabetes and those without diabetes. To collect data, we used a portable device developed by us, based on the registration of Raman spectra with laser excitation at 638 nm. The data were analyzed using Support Vector Machine neural networks.
RESULTS: After processing the spectroscopic measurements using Support Vector Machine, the system showed sensitivity (95,7%) and specificity (84,2%) in determining HbA1c levels comparable to traditional methods such as high-performance liquid chromatography. It was found that the algorithm is sufficiently adaptive and can be used across a wide range of skin types, regardless of the age and gender of the participants. The results suggest the possibility of using the developed device in clinical practice.
CONCLUSION: The developed portable glucometer based on Raman spectroscopy combined with machine learning algorithms could be a promising step towards non-invasive and continuous monitoring of glycemic levels in patients with diabetes.