Xuanliang Ji, Juan Feng, Jianping Li, Xingrong Chen, Chunzai Wang
{"title":"A quantitative explanation for the large impacts of El Niño during its decaying stage","authors":"Xuanliang Ji, Juan Feng, Jianping Li, Xingrong Chen, Chunzai Wang","doi":"10.1088/1748-9326/ad5e9c","DOIUrl":null,"url":null,"abstract":"\n This study examines the comparative atmospheric circulation and tropical sea surface temperature (SST) relationships during the developing and decaying stages of El Niño from a meridional structure standpoint. Results indicate a transition in the variability of the first two modes of the Hadley Circulation (HC) during these stages, with the first mode exhibiting a larger explained variance in the decaying stage. The regime change in HC variability corresponds to underlying anomalous SST distributions, as confirmed by sensitive experiments. Quantitative assessment reveals the HC-SST response amplitudes are approximately two times stronger during the decaying stage compared to the developing stage. Employing the Kuo-Eliassen (KE) equation, diabatic heating anomalies during the decaying stage explain the difference in air-sea response intensity between the two stages. Diabatic heating variations are identified as the primary contributor to amplification or reduction of air-sea response intensity during the respective El Niño stages, providing insights into the different air-sea processes throughout the El Niño lifespan.","PeriodicalId":507917,"journal":{"name":"Environmental Research Letters","volume":" 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad5e9c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the comparative atmospheric circulation and tropical sea surface temperature (SST) relationships during the developing and decaying stages of El Niño from a meridional structure standpoint. Results indicate a transition in the variability of the first two modes of the Hadley Circulation (HC) during these stages, with the first mode exhibiting a larger explained variance in the decaying stage. The regime change in HC variability corresponds to underlying anomalous SST distributions, as confirmed by sensitive experiments. Quantitative assessment reveals the HC-SST response amplitudes are approximately two times stronger during the decaying stage compared to the developing stage. Employing the Kuo-Eliassen (KE) equation, diabatic heating anomalies during the decaying stage explain the difference in air-sea response intensity between the two stages. Diabatic heating variations are identified as the primary contributor to amplification or reduction of air-sea response intensity during the respective El Niño stages, providing insights into the different air-sea processes throughout the El Niño lifespan.