Motivic coaction and single-valued map of polylogarithms from zeta generators

Hadleigh Frost, M. Hidding, Deepak Kamlesh, Carlos Rodriguez, Oliver Schlotterer, Bram Verbeek
{"title":"Motivic coaction and single-valued map of polylogarithms from zeta generators","authors":"Hadleigh Frost, M. Hidding, Deepak Kamlesh, Carlos Rodriguez, Oliver Schlotterer, Bram Verbeek","doi":"10.1088/1751-8121/ad5edf","DOIUrl":null,"url":null,"abstract":"\n We introduce a new Lie-algebraic approach to explicitly construct the motivic coaction and single-valued map of multiple polylogarithms in any number of variables. In both cases, the appearance of multiple zeta values is controlled by conjugating generating series of polylogarithms with Lie-algebra generators associated with odd zeta values. Our reformulation of earlier constructions of coactions and single-valued polylogarithms preserves choices of fibration bases, exposes the correlation between multiple zeta values of different depths and paves the way for generalizations beyond genus zero.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":" 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad5edf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new Lie-algebraic approach to explicitly construct the motivic coaction and single-valued map of multiple polylogarithms in any number of variables. In both cases, the appearance of multiple zeta values is controlled by conjugating generating series of polylogarithms with Lie-algebra generators associated with odd zeta values. Our reformulation of earlier constructions of coactions and single-valued polylogarithms preserves choices of fibration bases, exposes the correlation between multiple zeta values of different depths and paves the way for generalizations beyond genus zero.
来自zeta生成器的多项式的动因作用和单值映射
我们引入了一种新的李代数方法,以明确构建任意变量数中多重多项式的动机共作用和单值映射。在这两种情况下,多重泽塔值的出现都是通过与奇数泽塔值相关的李代数生成器共轭多项式的生成数列来控制的。我们对早先的共轭和单值多项式构造进行了重构,保留了振型基的选择,揭示了不同深度的多重zeta值之间的相关性,并为超越零属的广义化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信