Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics

IF 1.1 4区 工程技术 Q4 MECHANICS
†. H.Souli, J. Ahattab, S. Bensallam
{"title":"Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics","authors":"†. H.Souli, J. Ahattab, S. Bensallam","doi":"10.47176/jafm.17.9.2572","DOIUrl":null,"url":null,"abstract":"Stepped spillways are specialized hydraulic structures crafted to optimize the effective dissipation of hydraulic energy along stepped chutes. The central objective is to scrutinize and improve the mitigation of flow separation occurring from the ogee crest to the stepped chute, focusing on various profiles within the critical zone (CZ) to understand its flow behavior. The study evaluates the impact of CZ profile alterations on velocity distribution, revealing a reduction in velocity ranging from 10% to 18% for nappe flow and 7% to 15% for skimming flow, with a dissipation rate 5% higher than other tested profiles in the CZ. By combining physical experiments and numerical simulations, the research aims to understand the complex dynamics of CZ flow. A comparative analysis is conducted, comparing turbulence models (specifically RNG) against experimental data for velocity and dissipation rate, considering different numbers of steps (N=16, 22, 56, 60). Moreover, the research seeks to unravel the effects of introducing additional steps within the CZ on crucial hydraulic parameters. The results indicate a significant improvement in flow patterns, velocity fields, and energy dissipation for the modified profile, highlighting the practical applicability of the proposed approaches in effectively sizing the CZ.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.9.2572","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Stepped spillways are specialized hydraulic structures crafted to optimize the effective dissipation of hydraulic energy along stepped chutes. The central objective is to scrutinize and improve the mitigation of flow separation occurring from the ogee crest to the stepped chute, focusing on various profiles within the critical zone (CZ) to understand its flow behavior. The study evaluates the impact of CZ profile alterations on velocity distribution, revealing a reduction in velocity ranging from 10% to 18% for nappe flow and 7% to 15% for skimming flow, with a dissipation rate 5% higher than other tested profiles in the CZ. By combining physical experiments and numerical simulations, the research aims to understand the complex dynamics of CZ flow. A comparative analysis is conducted, comparing turbulence models (specifically RNG) against experimental data for velocity and dissipation rate, considering different numbers of steps (N=16, 22, 56, 60). Moreover, the research seeks to unravel the effects of introducing additional steps within the CZ on crucial hydraulic parameters. The results indicate a significant improvement in flow patterns, velocity fields, and energy dissipation for the modified profile, highlighting the practical applicability of the proposed approaches in effectively sizing the CZ.
阶梯式溢洪道中修正堰廓对流速场和耗散率的影响:使用物理模型和计算流体力学的比较研究
阶梯式溢洪道是一种专门的水力结构,旨在优化沿阶梯滑道的水力能量的有效消散。研究的核心目标是仔细检查并改进从楔形坡顶到阶梯式滑道的水流分离缓解措施,重点关注临界区(CZ)内的各种剖面,以了解其水流行为。研究评估了临界区剖面改变对流速分布的影响,结果表明,纳普流的流速降低了 10% 至 18%,撇流的流速降低了 7% 至 15%,消散率比临界区内其他测试剖面高出 5%。通过将物理实验和数值模拟相结合,该研究旨在了解 CZ 流的复杂动态。研究进行了对比分析,将湍流模型(特别是 RNG)与速度和耗散率的实验数据进行了比较,并考虑了不同的阶数(N=16、22、56、60)。此外,研究还试图揭示在 CZ 内引入额外台阶对关键水力参数的影响。结果表明,修改后的剖面在流动模式、速度场和能量耗散方面都有明显改善,突出表明了所建议的方法在有效确定 CZ 大小方面的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信