Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects

Huiying Ren, Jian Lu, Z. J. Hou, Tse-Chun Chen, L. R. Leung, Fukai Liu
{"title":"Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects","authors":"Huiying Ren, Jian Lu, Z. J. Hou, Tse-Chun Chen, L. R. Leung, Fukai Liu","doi":"10.1175/aies-d-23-0053.1","DOIUrl":null,"url":null,"abstract":"\nOf great relevance to climate engineering is the systematic relationship between the radiative forcing to the climate system and the response of the system, a relationship often represented by the linear response function (LRF) of the system. However, estimating the LRF often becomes an ill-posed inverse problem due to high-dimensionality and non-unique relationships between the forcing and response. Recent advances in machine learning make it possible to address the ill-posed inverse problem through regularization and sparse system fitting. Here we develop a convolutional neural network (CNN) for regularized inversion. The CNN is trained using the surface temperature responses from a set of Green’s function perturbation experiments as imagery input data together with data sample densification. The resulting CNN model can infer the forcing pattern responsible for the temperature response from out-of-sample forcing scenarios. This promising proof-of-concept suggests a possible strategy for estimating the optimal forcing to negate certain undesirable effects of climate change. The limited success of this effort underscores the challenges of solving an inverse problem for a climate system with inherent nonlinearity.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1175/aies-d-23-0053.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Of great relevance to climate engineering is the systematic relationship between the radiative forcing to the climate system and the response of the system, a relationship often represented by the linear response function (LRF) of the system. However, estimating the LRF often becomes an ill-posed inverse problem due to high-dimensionality and non-unique relationships between the forcing and response. Recent advances in machine learning make it possible to address the ill-posed inverse problem through regularization and sparse system fitting. Here we develop a convolutional neural network (CNN) for regularized inversion. The CNN is trained using the surface temperature responses from a set of Green’s function perturbation experiments as imagery input data together with data sample densification. The resulting CNN model can infer the forcing pattern responsible for the temperature response from out-of-sample forcing scenarios. This promising proof-of-concept suggests a possible strategy for estimating the optimal forcing to negate certain undesirable effects of climate change. The limited success of this effort underscores the challenges of solving an inverse problem for a climate system with inherent nonlinearity.
利用神经网络寻找抵消人为气候变化影响的最佳强迫措施
与气候工程密切相关的是气候系统辐射强迫与系统响应之间的系统关系,这种关系通常用系统的线性响应函数(LRF)来表示。然而,由于强迫和响应之间的高维度和非唯一关系,估计线性响应函数往往成为一个难以解决的逆问题。机器学习的最新进展使我们有可能通过正则化和稀疏系统拟合来解决难以解决的逆问题。在此,我们开发了一种用于正则化反演的卷积神经网络(CNN)。将一组格林函数扰动实验的表面温度响应作为图像输入数据,并对数据样本进行密集化处理,从而训练出卷积神经网络。由此产生的 CNN 模型可以从样本外的强迫情景中推断出导致温度响应的强迫模式。这一很有希望的概念验证提出了一种可能的策略,用于估算最佳的作用力,以消除气候变化的某些不良影响。这项工作的有限成功凸显了解决具有固有非线性的气候系统逆问题所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信