Model and Properties of Cauchy Modified Inverse Gompertz Distribution with Application to a Real Data Set

A. Chaudhary, Lal Babu Sah Telee
{"title":"Model and Properties of Cauchy Modified Inverse Gompertz Distribution with Application to a Real Data Set","authors":"A. Chaudhary, Lal Babu Sah Telee","doi":"10.3126/jnms.v7i1.67483","DOIUrl":null,"url":null,"abstract":"In this study, we introduce the Cauchy modified inverse Gompertz distribution as a new probability model. Utilizing the modified inverse Gompertz distribution as its baseline distribution, this model blends the Cauchy family of distributions. Our aim is to utilize this model for lifetime data analysis. We have inferred formulas for some basic properties of the model. We have also included graphic representations of the hazard rate and probability density curves. We observed that the probability density function displays positive skewness, while the hazard rate function plot shows an increasing-decreasing pattern. We used the Cramer-Von Mises method, the least squares approach, and maximum likelihood estimation to estimate the model parameters. We employed several statistical criteria to validate our model, including the corrected Akaike’s, the Bayesian, the Hannan-Quinn, as well as Akaike’s information criterion. We also utilized Q-Q and P-P graphs for further confirmation. To assess goodness of fit, we used the Kolmogorov-Smirnov, Anderson-Darlin, and Cramer-von Mises tests. The empirical results of the study show that it gives a better fit to the real data set. All numerical computations were conducted using the R programming language.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":" 68","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v7i1.67483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce the Cauchy modified inverse Gompertz distribution as a new probability model. Utilizing the modified inverse Gompertz distribution as its baseline distribution, this model blends the Cauchy family of distributions. Our aim is to utilize this model for lifetime data analysis. We have inferred formulas for some basic properties of the model. We have also included graphic representations of the hazard rate and probability density curves. We observed that the probability density function displays positive skewness, while the hazard rate function plot shows an increasing-decreasing pattern. We used the Cramer-Von Mises method, the least squares approach, and maximum likelihood estimation to estimate the model parameters. We employed several statistical criteria to validate our model, including the corrected Akaike’s, the Bayesian, the Hannan-Quinn, as well as Akaike’s information criterion. We also utilized Q-Q and P-P graphs for further confirmation. To assess goodness of fit, we used the Kolmogorov-Smirnov, Anderson-Darlin, and Cramer-von Mises tests. The empirical results of the study show that it gives a better fit to the real data set. All numerical computations were conducted using the R programming language.
考奇修正反 Gompertz 分布的模型和特性及其在真实数据集中的应用
在本研究中,我们引入了考奇修正反冈珀茨分布作为一种新的概率模型。该模型以修正的反 Gompertz 分布为基准分布,融合了 Cauchy 分布系列。我们的目标是利用这一模型进行寿命数据分析。我们推断出了该模型的一些基本属性公式。我们还用图形表示了危险率和概率密度曲线。我们观察到,概率密度函数显示出正偏度,而危险率函数图则显示出递增-递减模式。我们使用克莱默-冯-米塞斯法、最小二乘法和最大似然估计法来估计模型参数。我们采用了几种统计标准来验证我们的模型,包括校正阿凯克标准、贝叶斯标准、汉南-奎因标准以及阿凯克信息标准。我们还利用 Q-Q 图和 P-P 图来进一步确认。为了评估拟合优度,我们使用了 Kolmogorov-Smirnov、Anderson-Darlin 和 Cramer-von Mises 检验。研究的经验结果表明,它能更好地拟合真实数据集。所有数值计算均使用 R 编程语言进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信