Research on urban water demand prediction based on machine learning and feature engineering

Water Supply Pub Date : 2024-07-04 DOI:10.2166/ws.2024.157
Dongfei Yan, Yi Tao, Jianqi Zhang, Huijia Yang
{"title":"Research on urban water demand prediction based on machine learning and feature engineering","authors":"Dongfei Yan, Yi Tao, Jianqi Zhang, Huijia Yang","doi":"10.2166/ws.2024.157","DOIUrl":null,"url":null,"abstract":"\n \n Urban water demand prediction is not only the foundation of water resource planning and management, but also an important component of water supply system optimization and scheduling. Therefore, predicting future water demand is of great significance. For univariate time series data, the issue of outliers can be solved through data preprocessing. Then, the data input dimension is increased through feature engineering, and finally, the LightGBM (Light Gradient Boosting Machine) model is used to predict future water demand. The results demonstrate that cubic polynomial interpolation outperforms the Prophet model and the linear method in the context of missing value interpolation tasks. In terms of predicting water demand, the LightGBM model demonstrates excellent forecasting performance and can effectively predict future water demand trends. The evaluation indicators MAPE (mean absolute percentage error) and NSE (Nash–Sutcliffe efficiency coefficient) on the test dataset are 4.28% and 0.94, respectively. These indicators can provide a scientific basis for short-term prediction of water supply enterprises.","PeriodicalId":509977,"journal":{"name":"Water Supply","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2024.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Urban water demand prediction is not only the foundation of water resource planning and management, but also an important component of water supply system optimization and scheduling. Therefore, predicting future water demand is of great significance. For univariate time series data, the issue of outliers can be solved through data preprocessing. Then, the data input dimension is increased through feature engineering, and finally, the LightGBM (Light Gradient Boosting Machine) model is used to predict future water demand. The results demonstrate that cubic polynomial interpolation outperforms the Prophet model and the linear method in the context of missing value interpolation tasks. In terms of predicting water demand, the LightGBM model demonstrates excellent forecasting performance and can effectively predict future water demand trends. The evaluation indicators MAPE (mean absolute percentage error) and NSE (Nash–Sutcliffe efficiency coefficient) on the test dataset are 4.28% and 0.94, respectively. These indicators can provide a scientific basis for short-term prediction of water supply enterprises.
基于机器学习和特征工程的城市用水需求预测研究
城市需水预测不仅是水资源规划和管理的基础,也是供水系统优化和调度的重要组成部分。因此,预测未来需水量意义重大。对于单变量时间序列数据,可以通过数据预处理解决异常值问题。然后,通过特征工程增加数据输入维度,最后使用 LightGBM(Light Gradient Boosting Machine,光梯度提升机)模型预测未来用水需求。结果表明,在缺失值插值任务中,三次多项式插值优于先知模型和线性方法。在预测需水量方面,LightGBM 模型表现出卓越的预测性能,能够有效预测未来需水量趋势。在测试数据集上的评价指标 MAPE(平均绝对误差)和 NSE(纳什-苏特克利夫效率系数)分别为 4.28% 和 0.94。这些指标可为供水企业的短期预测提供科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信