On the Inversion and Dimension Pairs of Row-Strict Tableaux

Felemu Olasupo, Adetunji Patience
{"title":"On the Inversion and Dimension Pairs of Row-Strict Tableaux","authors":"Felemu Olasupo, Adetunji Patience","doi":"10.3126/jnms.v7i1.67485","DOIUrl":null,"url":null,"abstract":"In this article, we consider two algorithms, dimension and inversion pairs of rows-strict, used for the computation of Betti numbers of Springer varieties and then show that the sequences respectively generated by these algorithms are dual to each other, (except for λ = 1n where Ik = Dk) and that the sum Ik + Dk gives another sequence which is palindromic. We also show that for each row-strict tableau τ of shape λ = n − r, 1r (0 ≤ r ≤ n − 1), the dimension of the corresponding Springer varieties equals the cardinality of the union of the set of inversions and dimensions of τ. This research contributes to a deeper understanding of the rich combinatorial landscape of tableaux, opening up new avenues for further research.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":" 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v7i1.67485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider two algorithms, dimension and inversion pairs of rows-strict, used for the computation of Betti numbers of Springer varieties and then show that the sequences respectively generated by these algorithms are dual to each other, (except for λ = 1n where Ik = Dk) and that the sum Ik + Dk gives another sequence which is palindromic. We also show that for each row-strict tableau τ of shape λ = n − r, 1r (0 ≤ r ≤ n − 1), the dimension of the corresponding Springer varieties equals the cardinality of the union of the set of inversions and dimensions of τ. This research contributes to a deeper understanding of the rich combinatorial landscape of tableaux, opening up new avenues for further research.
论行严格表象的反演和维数对
在本文中,我们考虑了用于计算斯普林格变体的贝蒂数的两种算法,即行-严格的维数和反演对,然后证明了由这些算法分别生成的序列是对偶的(除了 λ = 1n 时 Ik = Dk),并且和 Ik + Dk 给出的另一个序列是回文序列。我们还证明,对于形状为 λ = n - r, 1r (0 ≤ r ≤ n - 1) 的每一个行严格表头 τ,相应 Springer varieties 的维数等于 τ 的反转集和维数的联合的万有引力。这项研究有助于加深对表头丰富组合景观的理解,为进一步研究开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信