Phase transformation of ferric-iron-rich silicate in Earth’s mid-mantle

IF 2.7 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
M. Lv, Shengcai Zhu, Jiachao Liu, Yi Hu, F. Zhu, X. Lai, Dongzhou Zhang, Bin Chen, Przemyslaw Dera, Jie Li, Susannah M Dorfman
{"title":"Phase transformation of ferric-iron-rich silicate in Earth’s mid-mantle","authors":"M. Lv, Shengcai Zhu, Jiachao Liu, Yi Hu, F. Zhu, X. Lai, Dongzhou Zhang, Bin Chen, Przemyslaw Dera, Jie Li, Susannah M Dorfman","doi":"10.2138/am-2024-9410","DOIUrl":null,"url":null,"abstract":"\n Incorporation of ferric iron in mantle silicates stabilizes different crystal structures and changes phase transition conditions, thus impacting seismic wave speeds and discontinuities. In MgSiO3-Fe2O3 mixtures, recent experiments indicate the coexistence of fully oxidized iron-rich (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 with Fe-poor silicate (wadsleyite or bridgmanite) and stishovite at 15 to 27 GPa and 1773 to 2000 K, conditions relevant to subducted lithosphere in the Earth’s transition zone and uppermost lower mantle. X-ray diffraction measurements show that (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 recovered from these conditions adopts the R3c LiNbO3-type structure, which transforms to the bridgmanite structure again between 18.3 GPa and 24.7 GPa at 300 K. Diffraction observations are used to obtain the equation of state of the LiNbO3-type phase up to 18.3 GPa. These observations combined with multi-anvil experiments suggest that the stable phase of (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 is bridgmanite at 15-27 GPa, which transforms on decompression to LiNbO3-type structure. Our calculation revealed that ordering of the ferric ion reduces the kinetic energy barrier of the transition between (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 LiNbO3 structure and bridgmanite relative to the MgSiO3 akimotoite-bridgmanite system. Dense Fe3+-rich bridgmanite structure is thus stable at substantially shallower depths than MgSiO3 bridgmanite and would promote subduction.","PeriodicalId":7768,"journal":{"name":"American Mineralogist","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/am-2024-9410","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporation of ferric iron in mantle silicates stabilizes different crystal structures and changes phase transition conditions, thus impacting seismic wave speeds and discontinuities. In MgSiO3-Fe2O3 mixtures, recent experiments indicate the coexistence of fully oxidized iron-rich (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 with Fe-poor silicate (wadsleyite or bridgmanite) and stishovite at 15 to 27 GPa and 1773 to 2000 K, conditions relevant to subducted lithosphere in the Earth’s transition zone and uppermost lower mantle. X-ray diffraction measurements show that (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 recovered from these conditions adopts the R3c LiNbO3-type structure, which transforms to the bridgmanite structure again between 18.3 GPa and 24.7 GPa at 300 K. Diffraction observations are used to obtain the equation of state of the LiNbO3-type phase up to 18.3 GPa. These observations combined with multi-anvil experiments suggest that the stable phase of (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 is bridgmanite at 15-27 GPa, which transforms on decompression to LiNbO3-type structure. Our calculation revealed that ordering of the ferric ion reduces the kinetic energy barrier of the transition between (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 LiNbO3 structure and bridgmanite relative to the MgSiO3 akimotoite-bridgmanite system. Dense Fe3+-rich bridgmanite structure is thus stable at substantially shallower depths than MgSiO3 bridgmanite and would promote subduction.
地球中幔富铁硅酸盐的相变
地幔硅酸盐中铁的加入稳定了不同的晶体结构,改变了相变条件,从而影响了地震波速度和不连续性。最近的实验表明,在 MgSiO3-Fe2O3 混合物中,富铁(Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 与贫铁硅酸盐(wadsleyite 或 bridgmanite)和褐铁矿在 15 至 27 GPa 和 1773 至 2000 K 的条件下共存,这些条件与地球过渡带和最上层下地幔的俯冲岩石圈相关。X 射线衍射测量结果表明,在这些条件下复原的 (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 采用 R3c LiNbO3 型结构,在 300 K 时,该结构在 18.3 GPa 至 24.7 GPa 之间再次转变为桥粒石结构。这些观察结果与多安维实验相结合表明,(Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 的稳定相是 15-27 GPa 下的桥芒石,在减压时转变为 LiNbO3 型结构。我们的计算显示,相对于 MgSiO3 赤铁矿-桥芒石体系,铁离子的有序化降低了 (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 LiNbO3 结构与桥芒石之间转变的动能势垒。因此,富含Fe3+的致密桥芒岩结构在深度比MgSiO3桥芒岩浅得多的情况下是稳定的,并且会促进俯冲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Mineralogist
American Mineralogist 地学-地球化学与地球物理
CiteScore
5.20
自引率
9.70%
发文量
276
审稿时长
1 months
期刊介绍: American Mineralogist: Journal of Earth and Planetary Materials (Am Min), is the flagship journal of the Mineralogical Society of America (MSA), continuously published since 1916. Am Min is home to some of the most important advances in the Earth Sciences. Our mission is a continuance of this heritage: to provide readers with reports on original scientific research, both fundamental and applied, with far reaching implications and far ranging appeal. Topics of interest cover all aspects of planetary evolution, and biological and atmospheric processes mediated by solid-state phenomena. These include, but are not limited to, mineralogy and crystallography, high- and low-temperature geochemistry, petrology, geofluids, bio-geochemistry, bio-mineralogy, synthetic materials of relevance to the Earth and planetary sciences, and breakthroughs in analytical methods of any of the aforementioned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信