{"title":"Advancements in eye movement measurement technologies for assessing neurodegenerative diseases","authors":"Tali G. Band, Rotem Z. Bar-Or, Edmund Ben-Ami","doi":"10.3389/fdgth.2024.1423790","DOIUrl":null,"url":null,"abstract":"Eye movements have long been recognized as a valuable indicator of neurological conditions, given the intricate involvement of multiple neurological pathways in vision-related processes, including motor and cognitive functions, manifesting in rapid response times. Eye movement abnormalities can indicate neurological condition severity and, in some cases, distinguish between disease phenotypes. With recent strides in imaging sensors and computational power, particularly in machine learning and artificial intelligence, there has been a notable surge in the development of technologies facilitating the extraction and analysis of eye movements to assess neurodegenerative diseases. This mini-review provides an overview of these advancements, emphasizing their potential in offering patient-friendly oculometric measures to aid in assessing patient conditions and progress. By summarizing recent technological innovations and their application in assessing neurodegenerative diseases over the past decades, this review also delves into current trends and future directions in this expanding field.","PeriodicalId":356782,"journal":{"name":"Frontiers Digit. Health","volume":" 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers Digit. Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2024.1423790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Eye movements have long been recognized as a valuable indicator of neurological conditions, given the intricate involvement of multiple neurological pathways in vision-related processes, including motor and cognitive functions, manifesting in rapid response times. Eye movement abnormalities can indicate neurological condition severity and, in some cases, distinguish between disease phenotypes. With recent strides in imaging sensors and computational power, particularly in machine learning and artificial intelligence, there has been a notable surge in the development of technologies facilitating the extraction and analysis of eye movements to assess neurodegenerative diseases. This mini-review provides an overview of these advancements, emphasizing their potential in offering patient-friendly oculometric measures to aid in assessing patient conditions and progress. By summarizing recent technological innovations and their application in assessing neurodegenerative diseases over the past decades, this review also delves into current trends and future directions in this expanding field.