Bio-sourced Black Soldier Fly (Hermetia illucens) Maggot Chitosan/PVA/PAN-based Polymer Electrolyte Membrane for Sustainable Energy Storage Applications

Q2 Engineering
Muhammad Thoriq Al Fath, N. F. Dalimunthe, Rivaldi Sidabutar, Michael Michael, Rosma Natalia Samosir, Thiodorus Marvin Tjandra, Gina Cynthia Raphita Hasibuan
{"title":"Bio-sourced Black Soldier Fly (Hermetia illucens) Maggot Chitosan/PVA/PAN-based Polymer Electrolyte Membrane for Sustainable Energy Storage Applications","authors":"Muhammad Thoriq Al Fath, N. F. Dalimunthe, Rivaldi Sidabutar, Michael Michael, Rosma Natalia Samosir, Thiodorus Marvin Tjandra, Gina Cynthia Raphita Hasibuan","doi":"10.14416/j.asep.2024.07.002","DOIUrl":null,"url":null,"abstract":"The global energy crisis sparked by dwindling fossil fuel reserves has precipitated efforts to develop sustainable battery technologies, as conventional dry cell batteries utilize toxic lead, graphite, and manganese oxide components that pollute the environment. Chitosan derived from black soldier fly (Hermetia illucens) maggot presents a biodegradable substitute. This study fabricated chitosan-based polymer electrolyte membranes by blending chitosan with polyvinyl alcohol (PVA) and polyacrylonitrile (PAN), then doping with ammonium chloride (NH4Cl) using the solvent-casting method. Varying NH4Cl compositions aimed to maximize ionic conductivity. Chitosan (13.455% water, 27.810% ash) was subsequently combined with PVA/PAN (20:80 w/w), NH4Cl, and casted onto petri dishes. Electrolyte membranes exhibited a maximum conductivity of 0.19612 ± 0.01572 S/cm with 0.9 g NH4Cl. FTIR spectroscopy verified the incorporation of chitosan (peaks at 3446.79 cm–1, 1643.35 cm–1, and 1151.50 cm–1), PVA (3446.79 cm–1 and 1136.07 cm–1), and NH4Cl (3371.57 cm–1 and 721.38 cm–1). SEM imaging visualized the incorporation of NH4Cl within the membrane. The chitosan-based biodegradable approach is compelling but limited by 0.19612 S/cm ionic conductivity, necessitating further compositional and processing optimizations for viable applications. Though it is promising for sustainable bio-sourced energy storage, challenges remain in enhancing conductivity through advanced polymer blends/dopants and scaling up for commercial biobattery manufacturing.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2024.07.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The global energy crisis sparked by dwindling fossil fuel reserves has precipitated efforts to develop sustainable battery technologies, as conventional dry cell batteries utilize toxic lead, graphite, and manganese oxide components that pollute the environment. Chitosan derived from black soldier fly (Hermetia illucens) maggot presents a biodegradable substitute. This study fabricated chitosan-based polymer electrolyte membranes by blending chitosan with polyvinyl alcohol (PVA) and polyacrylonitrile (PAN), then doping with ammonium chloride (NH4Cl) using the solvent-casting method. Varying NH4Cl compositions aimed to maximize ionic conductivity. Chitosan (13.455% water, 27.810% ash) was subsequently combined with PVA/PAN (20:80 w/w), NH4Cl, and casted onto petri dishes. Electrolyte membranes exhibited a maximum conductivity of 0.19612 ± 0.01572 S/cm with 0.9 g NH4Cl. FTIR spectroscopy verified the incorporation of chitosan (peaks at 3446.79 cm–1, 1643.35 cm–1, and 1151.50 cm–1), PVA (3446.79 cm–1 and 1136.07 cm–1), and NH4Cl (3371.57 cm–1 and 721.38 cm–1). SEM imaging visualized the incorporation of NH4Cl within the membrane. The chitosan-based biodegradable approach is compelling but limited by 0.19612 S/cm ionic conductivity, necessitating further compositional and processing optimizations for viable applications. Though it is promising for sustainable bio-sourced energy storage, challenges remain in enhancing conductivity through advanced polymer blends/dopants and scaling up for commercial biobattery manufacturing.
基于壳聚糖/PVA/PAN 的生物源黑兵蝇(Hermetia illucens)蛆聚合物电解质膜在可持续能源存储应用中的应用
化石燃料储量不断减少引发的全球能源危机促使人们努力开发可持续电池技术,因为传统干电池使用的有毒铅、石墨和氧化锰成分会污染环境。从黑兵蝇(Hermetia illucens)蛆中提取的壳聚糖是一种可生物降解的替代品。本研究将壳聚糖与聚乙烯醇(PVA)和聚丙烯腈(PAN)混合,然后用溶剂浇注法掺入氯化铵(NH4Cl),制成了壳聚糖基聚合物电解质膜。不同的 NH4Cl 成分旨在最大限度地提高离子传导性。壳聚糖(含水 13.455%,灰分 27.810%)随后与 PVA/PAN(20:80 w/w)和 NH4Cl 混合,并浇铸到培养皿上。在 0.9 g NH4Cl 的条件下,电解质膜的最大电导率为 0.19612 ± 0.01572 S/cm。傅立叶变换红外光谱验证了壳聚糖(峰值为 3446.79 cm-1、1643.35 cm-1 和 1151.50 cm-1)、PVA(3446.79 cm-1 和 1136.07 cm-1)和 NH4Cl(3371.57 cm-1 和 721.38 cm-1)的加入。扫描电子显微镜成像显示了 NH4Cl 在膜中的结合情况。基于壳聚糖的可生物降解方法很有吸引力,但受限于 0.19612 S/cm 的离子传导性,有必要进一步优化成分和加工,以实现可行的应用。虽然这种方法有望实现可持续的生物能源存储,但在通过先进的聚合物混合物/掺杂剂提高导电性以及扩大商业生物电池制造规模方面仍存在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信