{"title":"Anthropogenic Influences on Water Quality in Molo River, Lake Baringo Basin","authors":"Z. Gichana","doi":"10.9734/ijecc/2024/v14i74270","DOIUrl":null,"url":null,"abstract":"This study investigated the influence of human activities on water quality parameters in the Molo River, one of the major inflow rivers of Lake Baringo. Monthly measurements of physical and chemical parameters were conducted for six months (February-July 2023) at sampling stations established along the river to represent areas with different human activities. Analysis of variance was used to test for significant differences in water quality parameters among sampling stations. The results revealed significant downstream increases (p < 0.05) in water temperature, electrical conductivity, pH, total dissolved solids (TDS), and nutrients (total nitrogen, ammonium nitrogen, total phosphorus, and soluble reactive phosphorus) compared to upstream stations. Conversely, dissolved oxygen (DO) levels exhibited a downstream decrease. Sachangwan emerged as the most polluted sampling station with elevated levels of conductivity, total dissolved solids, total phosphorus, soluble reactive phosphorus, and ammonium nitrogen. In contrast, Sirindet recorded low pollutant levels. These observations are likely attributable to deforestation, agricultural practices, and point source pollution, which were more prevalent in downstream stations compared to the less disturbed upstream stations. The findings highlight the significant influence of human activities on the water quality along the Molo River. Understanding these interactions is crucial for developing effective pollution control strategies to protect the Molo River and Lake Baringo.","PeriodicalId":506431,"journal":{"name":"International Journal of Environment and Climate Change","volume":" 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environment and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ijecc/2024/v14i74270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the influence of human activities on water quality parameters in the Molo River, one of the major inflow rivers of Lake Baringo. Monthly measurements of physical and chemical parameters were conducted for six months (February-July 2023) at sampling stations established along the river to represent areas with different human activities. Analysis of variance was used to test for significant differences in water quality parameters among sampling stations. The results revealed significant downstream increases (p < 0.05) in water temperature, electrical conductivity, pH, total dissolved solids (TDS), and nutrients (total nitrogen, ammonium nitrogen, total phosphorus, and soluble reactive phosphorus) compared to upstream stations. Conversely, dissolved oxygen (DO) levels exhibited a downstream decrease. Sachangwan emerged as the most polluted sampling station with elevated levels of conductivity, total dissolved solids, total phosphorus, soluble reactive phosphorus, and ammonium nitrogen. In contrast, Sirindet recorded low pollutant levels. These observations are likely attributable to deforestation, agricultural practices, and point source pollution, which were more prevalent in downstream stations compared to the less disturbed upstream stations. The findings highlight the significant influence of human activities on the water quality along the Molo River. Understanding these interactions is crucial for developing effective pollution control strategies to protect the Molo River and Lake Baringo.