Improved Arithmetic on Koblitz Curves over Binary Field

Q4 Mathematics
Ayat Waleed Khaled, Najlae Falah, Hameed Al Saffar
{"title":"Improved Arithmetic on Koblitz Curves over Binary Field","authors":"Ayat Waleed Khaled, Najlae Falah, Hameed Al Saffar","doi":"10.52783/cana.v31.950","DOIUrl":null,"url":null,"abstract":"The longest process in ECC is the elliptic curve scalar multiplication. The structure of this operation involves three mathematical levels; this work aims to study issues that arise in the efficient implementation of this operation, specifically targeting the point arithmetic level for the Koblitz curve over a binary field. Theorems have been made for a speedy point doubling and point addition operation, in these theorems Jacobian coordinate modification has been considered, where these coordinates represent each point:  refers to a point on a curve  over . This occurs when a coordinate system represents any point on a Koblitz curve over a binary field. By choosing the right coordinate system, it is possible to speed up the elliptic curve scalar multiplication using this method.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The longest process in ECC is the elliptic curve scalar multiplication. The structure of this operation involves three mathematical levels; this work aims to study issues that arise in the efficient implementation of this operation, specifically targeting the point arithmetic level for the Koblitz curve over a binary field. Theorems have been made for a speedy point doubling and point addition operation, in these theorems Jacobian coordinate modification has been considered, where these coordinates represent each point:  refers to a point on a curve  over . This occurs when a coordinate system represents any point on a Koblitz curve over a binary field. By choosing the right coordinate system, it is possible to speed up the elliptic curve scalar multiplication using this method.
二进制域上科布利兹曲线的改进算术
ECC 中最长的过程是椭圆曲线标量乘法。这一运算的结构涉及三个数学层次;这项工作旨在研究高效实现这一运算过程中出现的问题,特别是针对二进制域上 Koblitz 曲线的点运算层次。在这些定理中,考虑了雅各布坐标修改,其中这些坐标代表每个点:指......上曲线上的一个点。当一个坐标系代表二元域上科布利兹曲线上的任意一点时,就会出现这种情况。通过选择正确的坐标系,可以用这种方法加快椭圆曲线标量乘法的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信