In-Silico Riboswitch Based Drug Design for SARS 1

Sonal Nivsarkar, Vishal Bhojyawal
{"title":"In-Silico Riboswitch Based Drug Design for SARS 1","authors":"Sonal Nivsarkar, Vishal Bhojyawal","doi":"10.32628/ijsrst24114102","DOIUrl":null,"url":null,"abstract":"Protein from the coronavirus causing severe acute respiratory syndrome (SARS-CoV) is responsible for binding to and identifying amino acid residues that are important for the synthesis of S1 with ACE2. It aids in the creation of antiviral inhibitors and experimental research. Anatomical models of the SARS-CoV S1 protein in fuse with human ACE2 were created in this study. One riboswitch depict for one strain of SARS Virus and five inhibitors have been classified for this riboswitch by virtual screening. These inhibitors seen to be free from the side effects of anti-viral agents.","PeriodicalId":14387,"journal":{"name":"International Journal of Scientific Research in Science and Technology","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrst24114102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein from the coronavirus causing severe acute respiratory syndrome (SARS-CoV) is responsible for binding to and identifying amino acid residues that are important for the synthesis of S1 with ACE2. It aids in the creation of antiviral inhibitors and experimental research. Anatomical models of the SARS-CoV S1 protein in fuse with human ACE2 were created in this study. One riboswitch depict for one strain of SARS Virus and five inhibitors have been classified for this riboswitch by virtual screening. These inhibitors seen to be free from the side effects of anti-viral agents.
基于芯片核糖开关的 SARS 1 药物设计
引起严重急性呼吸系统综合征(SARS-CoV)的冠状病毒的蛋白质负责与 ACE2 结合并确定对合成 S1 很重要的氨基酸残基。它有助于抗病毒抑制剂的研制和实验研究。本研究建立了 SARS-CoV S1 蛋白与人类 ACE2 融合的解剖模型。通过虚拟筛选,为一株 SARS 病毒描绘了一个核糖开关,并为该核糖开关分类了五种抑制剂。这些抑制剂没有抗病毒药物的副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信