Modeling Sea Level Rise Using Ensemble Techniques: Impacts on Coastal Adaptation, Freshwater Ecosystems, Agriculture and Infrastructure

Analytics Pub Date : 2024-07-05 DOI:10.3390/analytics3030016
S. Dhal, Rishabh Singh, Tushar Pandey, Sheelabhadra Dey, Stavros Kalafatis, Vivekvardhan Kesireddy
{"title":"Modeling Sea Level Rise Using Ensemble Techniques: Impacts on Coastal Adaptation, Freshwater Ecosystems, Agriculture and Infrastructure","authors":"S. Dhal, Rishabh Singh, Tushar Pandey, Sheelabhadra Dey, Stavros Kalafatis, Vivekvardhan Kesireddy","doi":"10.3390/analytics3030016","DOIUrl":null,"url":null,"abstract":"Sea level rise (SLR) is a crucial indicator of climate change, primarily driven by greenhouse gas emissions and the subsequent increase in global temperatures. The impact of SLR, however, varies regionally due to factors such as ocean bathymetry, resulting in distinct shifts across different areas compared to the global average. Understanding the complex factors influencing SLR across diverse spatial scales, along with the associated uncertainties, is essential. This study focuses on the East Coast of the United States and Gulf of Mexico, utilizing historical SLR data from 1993 to 2023. To forecast SLR trends from 2024 to 2103, a weighted ensemble model comprising SARIMAX, LSTM, and exponential smoothing models was employed. Additionally, using historical greenhouse gas data, an ensemble of LSTM models was used to predict real-time SLR values, achieving a testing loss of 0.005. Furthermore, conductance and dissolved oxygen (DO) values were assessed for the entire forecasting period, leveraging forecasted SLR trends to evaluate the impacts on marine life, agriculture, and infrastructure.","PeriodicalId":512104,"journal":{"name":"Analytics","volume":" 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics3030016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sea level rise (SLR) is a crucial indicator of climate change, primarily driven by greenhouse gas emissions and the subsequent increase in global temperatures. The impact of SLR, however, varies regionally due to factors such as ocean bathymetry, resulting in distinct shifts across different areas compared to the global average. Understanding the complex factors influencing SLR across diverse spatial scales, along with the associated uncertainties, is essential. This study focuses on the East Coast of the United States and Gulf of Mexico, utilizing historical SLR data from 1993 to 2023. To forecast SLR trends from 2024 to 2103, a weighted ensemble model comprising SARIMAX, LSTM, and exponential smoothing models was employed. Additionally, using historical greenhouse gas data, an ensemble of LSTM models was used to predict real-time SLR values, achieving a testing loss of 0.005. Furthermore, conductance and dissolved oxygen (DO) values were assessed for the entire forecasting period, leveraging forecasted SLR trends to evaluate the impacts on marine life, agriculture, and infrastructure.
利用集合技术模拟海平面上升:对沿海适应、淡水生态系统、农业和基础设施的影响
海平面上升(SLR)是气候变化的一个重要指标,其主要驱动因素是温室气体排放和随之而来的全球气温上升。然而,由于海洋水深等因素的影响,海平面上升的影响因地区而异,导致不同地区的海平面上升与全球平均水平相比有明显差异。了解影响不同空间尺度 SLR 的复杂因素以及相关的不确定性至关重要。本研究重点关注美国东海岸和墨西哥湾,利用 1993 年至 2023 年的历史 SLR 数据。为预测 2024 年至 2103 年的 SLR 趋势,采用了一个由 SARIMAX、LSTM 和指数平滑模型组成的加权集合模型。此外,利用历史温室气体数据,使用 LSTM 模型集合预测实时 SLR 值,测试损失为 0.005。此外,还对整个预测期的电导率和溶解氧 (DO) 值进行了评估,利用预测的可持续土地退化和干旱趋势来评估对海洋生物、农业和基础设施的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信