Galaxy populations and redshift dependence of the correlation between infrared and radio luminosity

G. De Zotti, M. Bonato, M. Giulietti, M. Massardi, M. Negrello, H. Algera, J. Delhaize
{"title":"Galaxy populations and redshift dependence of the correlation between infrared and radio luminosity","authors":"G. De Zotti, M. Bonato, M. Giulietti, M. Massardi, M. Negrello, H. Algera, J. Delhaize","doi":"10.1051/0004-6361/202449313","DOIUrl":null,"url":null,"abstract":"We argue that the difference in infrared-to-radio luminosity ratio between local and high-redshift star-forming galaxies reflects the alternative physical conditions ---including magnetic field configurations--- of the dominant population of star-forming galaxies in different redshift ranges. We define three galactic types, based on our reference model, with reference to ages of stellar populations. ``Normal'' late-type galaxies dominate the star formation in the nearby Universe; ``starburst'' galaxies take over at higher redshifts, up to $z 1.5$; while ``protospheroidal'' galaxies dominate at high redshift. A reanalysis of data from the COSMOS field combined with literature results shows that, for each population, the data are consistent with an almost redshift-independent mean value of the parameter IR $, which quantifies the infrared--radio correlation. However, we find a hint of an upturn of the mean $q_ IR $ at $z 3.5$ consistent with the predicted dimming of synchrotron emission due to cooling of relativistic electrons by inverse Compton scattering off the cosmic microwave background. The typical stellar masses increase from normal, to starburst, and to protospheroidal galaxies, accounting for the reported dependence of the mean IR $ on stellar mass. Higher values of $q_ IR $ found for high-$z$ strongly lensed dusty galaxies selected at $500\\ might be explained by differential magnification.","PeriodicalId":505693,"journal":{"name":"Astronomy & Astrophysics","volume":" 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202449313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We argue that the difference in infrared-to-radio luminosity ratio between local and high-redshift star-forming galaxies reflects the alternative physical conditions ---including magnetic field configurations--- of the dominant population of star-forming galaxies in different redshift ranges. We define three galactic types, based on our reference model, with reference to ages of stellar populations. ``Normal'' late-type galaxies dominate the star formation in the nearby Universe; ``starburst'' galaxies take over at higher redshifts, up to $z 1.5$; while ``protospheroidal'' galaxies dominate at high redshift. A reanalysis of data from the COSMOS field combined with literature results shows that, for each population, the data are consistent with an almost redshift-independent mean value of the parameter IR $, which quantifies the infrared--radio correlation. However, we find a hint of an upturn of the mean $q_ IR $ at $z 3.5$ consistent with the predicted dimming of synchrotron emission due to cooling of relativistic electrons by inverse Compton scattering off the cosmic microwave background. The typical stellar masses increase from normal, to starburst, and to protospheroidal galaxies, accounting for the reported dependence of the mean IR $ on stellar mass. Higher values of $q_ IR $ found for high-$z$ strongly lensed dusty galaxies selected at $500\ might be explained by differential magnification.
星系群与红外和射电光度之间相关性的红移依赖性
我们认为,本地恒星形成星系和高红移恒星形成星系之间的红外-辐射光度比的差异反映了不同红移范围内恒星形成星系的主要群体的不同物理条件--包括磁场配置。我们根据参考模型,参照恒星群的年龄,定义了三种星系类型。正常 "晚期星系主导着邻近宇宙的恒星形成;"星爆 "星系在较高的红移下占据主导地位,最高可达1.5z;而 "原球面 "星系则在高红移下占据主导地位。对来自 COSMOS 星场的数据结合文献结果进行的重新分析表明,对于每一个星系群,数据都与一个几乎与红移无关的参数 IR $ 的平均值相一致,这个参数可以量化红外--无线电相关性。然而,我们发现平均值 $q_ IR $ 在 $z 3.5$ 时有上升的迹象,这与预测的同步辐射变暗是一致的,因为相对论电子通过宇宙微波背景的反康普顿散射冷却了同步辐射。从正常星系到星爆星系,再到原球状星系,典型的恒星质量都在增加,这也是报告中平均 IR $ 与恒星质量相关的原因。在选取的 $500 的高 $z$ 强透镜尘埃星系中发现的 $q_ IR $ 值较高,这可能是由于放大倍数不同造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信