{"title":"Temperature optimization model to inhibit zero-order kinetic reactions","authors":"Januardi Januardi, Aditya Sukma Nugraha","doi":"10.1515/cppm-2023-0101","DOIUrl":null,"url":null,"abstract":"Abstract Originally, the Arrhenius parameters were used to estimate the rate of chemical reactions. This article aims to develop the optimal temperature to inhibit specific zero-order kinetic reactions. The model extends the use of the Arrhenius equation and heat capacity modeling to derive the optimal temperature solution. Specifically, the Arrhenius equation, which connects temperature to reaction rates, and the heat equation are formulated to create a comprehensive heat accumulation model. Analytical modeling is utilized through a derivative process to provide optimization. According to a case study of carotene oxidation, the derivative solution proposes −1.73 °C and can extend the reaction time by 206,160.29 days compared to a solution with no temperature change. The derivative solution also offers higher advantages in practical application than setting the lowest temperature limit due to the high initial energy requirement. The temperature derivative solution exhibits a global optimum property because of its high heat accumulation and slower kinetic reactions. These slower kinetic reactions can prevent reactant substances from deteriorating, making them valuable for maintaining a chemical’s shelf life. The temperature solutions offer valuable insights for devising an effective temperature strategy to inhibit specific chemical processes and verifying the relationship between temperature and heat accumulation with curvature.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Originally, the Arrhenius parameters were used to estimate the rate of chemical reactions. This article aims to develop the optimal temperature to inhibit specific zero-order kinetic reactions. The model extends the use of the Arrhenius equation and heat capacity modeling to derive the optimal temperature solution. Specifically, the Arrhenius equation, which connects temperature to reaction rates, and the heat equation are formulated to create a comprehensive heat accumulation model. Analytical modeling is utilized through a derivative process to provide optimization. According to a case study of carotene oxidation, the derivative solution proposes −1.73 °C and can extend the reaction time by 206,160.29 days compared to a solution with no temperature change. The derivative solution also offers higher advantages in practical application than setting the lowest temperature limit due to the high initial energy requirement. The temperature derivative solution exhibits a global optimum property because of its high heat accumulation and slower kinetic reactions. These slower kinetic reactions can prevent reactant substances from deteriorating, making them valuable for maintaining a chemical’s shelf life. The temperature solutions offer valuable insights for devising an effective temperature strategy to inhibit specific chemical processes and verifying the relationship between temperature and heat accumulation with curvature.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.