Some Bench Mark Results on Total Domination Subdivision Stable Graph

Q4 Mathematics
A. Jeeva
{"title":"Some Bench Mark Results on Total Domination Subdivision Stable Graph","authors":"A. Jeeva","doi":"10.52783/cana.v31.860","DOIUrl":null,"url":null,"abstract":"For a graph G, the total dominating set defined as a set of vertices in S such that all the vertices in V(G) has at least one neighbor in S, the least cardinality is noted as t(G). The total domination number of each and every graph while subdividing any edge xy of G is equal to the total domination number of G, which results in the total domination subdivision stable graph abbreviated as TDSS and the symbolic expression is Gtsd(xy). The research paper, we introduce TDSS and proposed conditions under which a graph is TDSS and not TDSS.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G, the total dominating set defined as a set of vertices in S such that all the vertices in V(G) has at least one neighbor in S, the least cardinality is noted as t(G). The total domination number of each and every graph while subdividing any edge xy of G is equal to the total domination number of G, which results in the total domination subdivision stable graph abbreviated as TDSS and the symbolic expression is Gtsd(xy). The research paper, we introduce TDSS and proposed conditions under which a graph is TDSS and not TDSS.
总统治细分稳定图的一些基准结果
对于图 G,总支配集定义为 S 中的顶点集合,使得 V(G)中的所有顶点在 S 中至少有一个相邻顶点,最小心数记为 t(G)。在细分 G 的任意一条边 xy 时,每个图的总支配数都等于 G 的总支配数,因此总支配细分稳定图简称为 TDSS,符号表达式为 Gtsd(xy)。在本研究论文中,我们介绍了 TDSS,并提出了图是 TDSS 和不是 TDSS 的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信