The Forcing Circular Number of a Graph

Q4 Mathematics
S. Sheeja
{"title":"The Forcing Circular Number of a Graph","authors":"S. Sheeja","doi":"10.52783/cana.v31.843","DOIUrl":null,"url":null,"abstract":"Let S be a cr-set of graph G and let G be a connected graph. If S is the only cr-set that contains T, then a subset T⊆S is referred to be a forcing subset for S. A minimum forcing subset of S is a forcing subset for S of minimum cardinality. The cardinality of a minimum forcing subset of S is the forcing circular number of S, represented by the notation f_cr(S). f_cr (G) = min {f_cr(S)} is the forcing circular number of G, where the minimum is the sum of all minimum forcing circular-sets S in G. For several standard graphs, the forcing circular number is identified. It is demonstrated that there exists a connected graph G such that f_g (G)=a and f_cr (G)=b for every integer a≥0, and b≥0.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a cr-set of graph G and let G be a connected graph. If S is the only cr-set that contains T, then a subset T⊆S is referred to be a forcing subset for S. A minimum forcing subset of S is a forcing subset for S of minimum cardinality. The cardinality of a minimum forcing subset of S is the forcing circular number of S, represented by the notation f_cr(S). f_cr (G) = min {f_cr(S)} is the forcing circular number of G, where the minimum is the sum of all minimum forcing circular-sets S in G. For several standard graphs, the forcing circular number is identified. It is demonstrated that there exists a connected graph G such that f_g (G)=a and f_cr (G)=b for every integer a≥0, and b≥0.
图形的强制循环数
设 S 是图 G 的一个 cr 集,G 是一个连通图。如果 S 是唯一包含 T 的 cr 集,那么子集 T⊆S 就是 S 的强制子集。S 的最小强制子集的卡片数是 S 的强制循环数,用符号 f_cr(S) 表示。f_cr (G) = min {f_cr(S)} 是 G 的强制循环数,其中最小值是 G 中所有最小强制循环集 S 的和。证明存在一个连通图 G,对于每一个整数 a≥0 和 b≥0,f_g (G)=a 和 f_cr (G)=b 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信