{"title":"The Volatile Compounds Composition of Different Parts of Wild Kazakhstan Sedum ewersii Ledeb.","authors":"Tatyana Kobylina, A. Novikov, Gulbanu Sadyrova, Elzira Kyrbassova, Saltanat Nazarbekova, Elmira Imanova, Meruyert Parmanbekova, Bekzat Tynybekov","doi":"10.3390/separations11070208","DOIUrl":null,"url":null,"abstract":"The chemical composition of Sedum ewersii Ledeb., a plant indigenous to Kazakhstan and traditionally utilized in folk medicine, was comprehensively investigated, with a focus on its various plant parts. Fresh samples collected in May 2023 from the Almaty region underwent hydrodistillation to extract volatile components, followed by analysis using gas chromatography coupled with mass spectrometric detection, which identified a total of 71 compounds across different plant parts, including the root (underground part), root (aerial part), leaf, stem, and flowering aerial part. The predominant biologically active compound identified across all plant parts was Ethyl α-D-glucopyranoside. Monoterpenes, recognized as primary secondary metabolites, were notably abundant in each plant part, with varying compositions: the root (underground part) contained 28.58% aliphatic monoterpenes, 54.41% oxygenated monoterpenoids, 1.42% diterpenoids, and 15.59% other compounds; the root (aerial part) exhibited 1.34% aliphatic monoterpenes, 31.28% oxygenated monoterpenoids, 6.16% diterpenoids, and 61.22% other compounds; the stem and leaves showed 3.06% aliphatic monoterpenes, 21.49% oxygenated monoterpenoids, 17.99% diterpenoids, and 57.46% other compounds; and the flowering aerial part displayed 8.20% aliphatic monoterpenes, 53.18% oxygenated monoterpenoids, 23.75% diterpenoids, and 14.87% other compounds. Diterpenes, particularly Phytol, were prominently present in the leaf, stem, and flowering aerial parts. Additionally, a diverse array of organic acids, ketones, and phenolic compounds were identified across the plant parts, each potentially offering distinct pharmacological benefits. The presence of exclusive compounds in specific plant parts, such as Dihydroxyacetone in the root (aerial part), underscored the pharmacological diversity of S. ewersii. This study provides valuable insights into the chemical diversity and pharmacological potential of S. ewersii, suggesting promising applications in pharmaceutical and medicinal fields. Further research aimed at elucidating the individual and synergistic pharmacological effects of these compounds is crucial to fully harness the therapeutic benefits of this plant.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11070208","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical composition of Sedum ewersii Ledeb., a plant indigenous to Kazakhstan and traditionally utilized in folk medicine, was comprehensively investigated, with a focus on its various plant parts. Fresh samples collected in May 2023 from the Almaty region underwent hydrodistillation to extract volatile components, followed by analysis using gas chromatography coupled with mass spectrometric detection, which identified a total of 71 compounds across different plant parts, including the root (underground part), root (aerial part), leaf, stem, and flowering aerial part. The predominant biologically active compound identified across all plant parts was Ethyl α-D-glucopyranoside. Monoterpenes, recognized as primary secondary metabolites, were notably abundant in each plant part, with varying compositions: the root (underground part) contained 28.58% aliphatic monoterpenes, 54.41% oxygenated monoterpenoids, 1.42% diterpenoids, and 15.59% other compounds; the root (aerial part) exhibited 1.34% aliphatic monoterpenes, 31.28% oxygenated monoterpenoids, 6.16% diterpenoids, and 61.22% other compounds; the stem and leaves showed 3.06% aliphatic monoterpenes, 21.49% oxygenated monoterpenoids, 17.99% diterpenoids, and 57.46% other compounds; and the flowering aerial part displayed 8.20% aliphatic monoterpenes, 53.18% oxygenated monoterpenoids, 23.75% diterpenoids, and 14.87% other compounds. Diterpenes, particularly Phytol, were prominently present in the leaf, stem, and flowering aerial parts. Additionally, a diverse array of organic acids, ketones, and phenolic compounds were identified across the plant parts, each potentially offering distinct pharmacological benefits. The presence of exclusive compounds in specific plant parts, such as Dihydroxyacetone in the root (aerial part), underscored the pharmacological diversity of S. ewersii. This study provides valuable insights into the chemical diversity and pharmacological potential of S. ewersii, suggesting promising applications in pharmaceutical and medicinal fields. Further research aimed at elucidating the individual and synergistic pharmacological effects of these compounds is crucial to fully harness the therapeutic benefits of this plant.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization