Rosario Pariona-Luque, Alex Pacheco, Edwin Vegas-Gallo, R. Castanho, Fabian Lema, Liz Pacheco-Pumaleque, Marco Añaños-Bedriñana, Wilson Marin, Edwin Felix-Poicon, Ana Loures
{"title":"Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning","authors":"Rosario Pariona-Luque, Alex Pacheco, Edwin Vegas-Gallo, R. Castanho, Fabian Lema, Liz Pacheco-Pumaleque, Marco Añaños-Bedriñana, Wilson Marin, Edwin Felix-Poicon, Ana Loures","doi":"10.37394/23207.2024.21.126","DOIUrl":null,"url":null,"abstract":"Nowadays, implementing data analytics is necessary to improve the collection, evaluation, analysis, and organization of data that allow the discovery of patterns, correlations, and trends that improve knowledge management, development of strategies, and decision-making in the organization. Therefore, this study aims to provide an accurate and detailed assessment of the current state of data analytics in the retail sector, identifying specific areas of improvement to strengthen knowledge management in organizations. The research is applied with a quantitative approach and non-experimental design at a descriptive and propositional level. The survey technique was used, and as a data collection instrument, a questionnaire addressed to 351 employees of companies in the retail sector concerning the variable data analysis with the dimensions of data extraction, predictive analysis, and machine learning and the variable management of the knowledge with the dimensions knowledge creation and knowledge storage. The results show that 52.99% of collaborators indicate that the level of data extraction is terrible, 57.83% indicate that the level of predictive analysis is wrong, and 54.99% express that the level of machine learning is average, which contributes to the implementation of innovative resources and solutions that promote the inclusion of a high-tech approach to address information management problems and contribution to the development of knowledge in an institution.","PeriodicalId":39427,"journal":{"name":"WSEAS Transactions on Business and Economics","volume":" 32","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Business and Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23207.2024.21.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, implementing data analytics is necessary to improve the collection, evaluation, analysis, and organization of data that allow the discovery of patterns, correlations, and trends that improve knowledge management, development of strategies, and decision-making in the organization. Therefore, this study aims to provide an accurate and detailed assessment of the current state of data analytics in the retail sector, identifying specific areas of improvement to strengthen knowledge management in organizations. The research is applied with a quantitative approach and non-experimental design at a descriptive and propositional level. The survey technique was used, and as a data collection instrument, a questionnaire addressed to 351 employees of companies in the retail sector concerning the variable data analysis with the dimensions of data extraction, predictive analysis, and machine learning and the variable management of the knowledge with the dimensions knowledge creation and knowledge storage. The results show that 52.99% of collaborators indicate that the level of data extraction is terrible, 57.83% indicate that the level of predictive analysis is wrong, and 54.99% express that the level of machine learning is average, which contributes to the implementation of innovative resources and solutions that promote the inclusion of a high-tech approach to address information management problems and contribution to the development of knowledge in an institution.
期刊介绍:
WSEAS Transactions on Business and Economics publishes original research papers relating to the global economy. We aim to bring important work using any economic approach to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of finances. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. While its main emphasis is economic, it is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with the international dimensions of business, economics, finance, history, law, marketing, management, political science, and related areas. It also welcomes scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.